Белковая буферная система. Фосфатная буферная система Гемоглобиновая буферная система крови

http://monax.ru/order/ - рефераты на заказ (более 2300 авторов в 450 городах СНГ). - 15 -

Кислотно-основные буферные системы и растворы .

Буферными называют растворы, рН которых практически на изменяется от добавления к ним небольших количеств сильной кислоты или щелочи, а также при разведении. Простейший буферный раствор - это смесь слабой кислоты и соли, имеющей с этой кислотой общий анион (например, смесь уксусной кислоты СН3СООН и ацетата натрия СН3СООNa), либо смесь слабого основания и соли, имеющей с этим основанием общий катион (например, смесь гидроксида аммония NH4OH с хлоридом аммония NH4Cl).

С точки зрения протонной теории Согласно протонной теории, кислотой называют всякое вещество, молекулярные частицы которого (в том числе и ионы) способны отдавать протон, т.е. быть донором протонов; основанием называют всякое вещество, молекулярные частицы которого (в том числе и ионы) способны присоединять протоны, т.е. быть акцептором протонов. буферное действие растворов обусловлено наличием кислотно-основного равновесия общего типа:

Воснование + Н+ ВН+сопряженная кислота

НАкислота Н+ + А-сопряженное основание

Сопряженные кислотно-основные пары В /ВН + и А - /НА называют буферными системами.

Буферные растворы играют большую роль в жизнедеятельности. К числу исключительных свойств живых организмов относится их способность поддерживать постоянство рН биологических жидкостей, тканей и органов - кислотно-основной гомеостаз. Это постоянство обусловлено наличием нескольких буферных систем, входящих в состав этих тканей.

Классификация кислотно-основных буферных систем. Буферные системы могут быть четырех типов:

Слабая кислота и ее анион А - /НА :

ацетатная буферная система СН3СОО-/СН3СООН в растворе СН3СООNa и СН3СООН, область действия рН 3, 8 - 5, 8.

Водород-карбонатная система НСО3-/Н2СО3 в растворе NaНСО3 и Н2СО3, область её действия - рН 5, 4 - 7, 4.

Слабое основание и его катион В/ВН + :

аммиачная буферная система NH3/NH4+ в растворе NH3 и NH4Cl,

область ее действия - рН 8, 2 - 10, 2.

Анионы кислой и средней соли или двух кислых солей :

карбонатная буферная система СО32- /НСО3- в растворе Na2CO3 и NaHCO3, область ее действия рН 9, 3 - 11, 3.

фосфатная буферная система НРО42-/Н2РО4- в растворе Nа2НРО4 и NаН2РО4, область ее действия рН 6, 2 - 8, 2.

Эти солевые буферные системы можно отнести к 1-му типу, т. к. одна из солей этих буферных систем выполняет функцию слабой кислоты. Так, в фосфатной буферной системе анион Н2РО4- является слабой кислотой.

4. Ионы и молекулы амфолитов . К ним относят аминокислотные и белковые буферные системы. Если аминокислоты или белки находятся в изоэлектрическом состоянии (суммарный заряд молекулы равен нулю), то растворы этих соединений не являются буферными. Они начинают проявлять буферное действие, когда к ним добавляют некоторое количество кислоты или щелочи. Тогда часть белка (аминокислоты) переходит из ИЭС в форму “белок-кислота” или соответственно в форму “белок-основание”. При этом образуется смесь двух форм белка: (R - макромолекулярный остаток белка)

а) слабая “белок-кислота” + соль этой слабой кислоты:

СОО- СООН

R - СН + Н+ R - СН

основание А- сопряженная кислота НА

(соль белка-килоты) (белок-кислота)

б) слабое “белок-основание” + соль этого слабого основания:

R - СН + ОН- R - СН + Н2О

кислота ВН+ сопряженное основание В

(соль белка-основания) (белок-основание)

Таким образом, и этот тип буферных систем может быть отнесен соответственно к буферным системам 1-го и 2-го типов.

Механизм буферного действия можно понять на примере ацетатной буферной системы СН3СОО-/СН3СООН, в основе действия которой лежит кислотно-основное равновесие:

СН3СООН СН3СОО- + Н+; (рК а = 4, 8)

Главный источник ацетат-ионов - сильный электролит СН3СООNa:

СН3СООNa СН3СОО- + Na+

При добавлении сильной кислоты сопряженное основание СН3СОО- связывает добавочные ионы Н+, превращаясь в слабую уксусную кислоту:

СН3СОО- + Н+ СН3СООН

(кислотно-основное равновесие смещается влево, по Ле Шателье)

Уменьшение концентрации анионов СН3СОО- точно уравновешивается повышение концентрации молекул СН3СООН. В результате происходит небольшое изменение в соотношении концентраций слабой кислоты и ее соли, а следовательно, и незначительно изменяется рН.

При добавлении щелочи протоны уксусной кислоты (резервная кислотность) высвобождаются и нейтрализуются добавочные ионы ОН-, связывая их в молекулы воды:

СН3СООН + ОН- СН3СОО- + Н2О

(кислотно-основное равновесие смещается вправо, по Ле Шателье)

В этом случае также происходит небольшое изменение в соотношении концентраций слабой кислоты и ее соли, а следовательно, и незначительное изменение рН. Уменьшение концентрации слабой кислоты СН3СООН точно уравновешивается повышение концентрации анионов СН3СОО-.

Аналогичен механизм действия и других буферных систем. Например, для белкового буферного раствора , образованного кислой и солевой формами белка, при добавлении сильной кислоты ионы Н+ связываются солевой формой белка:

СОО- СООН

R - СН + Н+ R - СН

Количество слабой кислоты при это незначительно увеличивается, а солевой формы белка - эквивалентно уменьшается. Поэтому рН остается практически постоянным.

При добавлении щелочи к этому буферному раствору ионы Н+, связанные в "белке - кислоте", высвобождаются и нейтрализуют добавленные ионы ОН-:

СООН СОО-

R - СН + ОН- R - СН + Н2О

Количество солевой формы белка при этом незначительно увеличивается, а "белка - кислоты" - эквивалентно уменьшается. И поэтому рН практически не изменится.

Таким образом, рассмотренные системы показывают, что буферное действие раствора обусловлено смещением кислотно-основного равновесия за счет связывания добавляемых в раствор ионов Н + и ОН - в результате реакции этих ионов и компонентов буферной системы с образованием малодиссоциированных продуктов .

В основе расчета рН буферных систем лежит закон действующих масс для кислотно-основного равновесия.

Для буферной системы 1-го типа , например, ацетатной, концентрацию ионов Н+ в растворе легко вычислит, исходя из константы кислотно-основного равновесия уксусной кислоты:

СН3СООН СН3СОО- + Н+; (рК а = 4, 8)

В присутствии второго компонента буферного раствора - сильного электролита СН3СООNa кислотно-основное равновесие уксусной кислоты СН3СООН сдвинуто влево (принцип Ле Шателье). Поэтому концентрация недиссоциированных молекул СН3СООН практически равна концентрации кислоты, а концентрация ионов СН3СОО- - концентрации соли. В таком случае уравнение (2) принимает следующий вид:

где с (кислота) и с (соль) - равновесные концентрации кислоты и соли. Отсюда получают уравнение Гендерсона-Гассельбаха для буферных систем 1-го типа :

В общем случае уравнение Гендерсона-Гассельбаха для буферных систем 1-го типа:

Для буферной системы 2-го типа , например, аммиачной, концентрацию ионов Н+ в растворе можно рассчитать, исходя из константы кислотно-основного равновесия сопряженной кислоты NH4+:

NH4+ NH3 + Н+; рК а = 9, 2;

Уравнение (7) для буферных систем 2-го типа можно представит и в следующем виде:

Значения рН буферных растворов других типов также можно рассчитать по уравнениям буферного действия (4), (7), (8).

Например, для фосфатной буферной системы НРО 4 2- 2 РО 4 - , относящейся к 3-му типу, рН можно рассчитать по уравнению (4):

рН = рК а (Н2РО4-) + lg

с (НРО42-)

с (Н2РО4-)

где рК а (Н2РО4-) - отрицательный десятичный логарифм константы диссоциации фосфорной кислоты по второй ступени рК а (Н2РО4- - слабая кислота);

с (НРО42-) и с (Н2РО4-) - соответственно концентрации соли и кислоты.

Уравнение Гендерсона-Гассельбаха позволяет сформулировать ряд важных выводов:

1. рН буферных растворов зависит от отрицательного действия логарифма константы диссоциации слабой кислоты рК а или основания рК в и от отношения концентраций компонентов КО-пары, но практически не зависит от разбавления раствора водой.

Следует отметить, что постоянство рН хорошо выполняется при малых концентрациях буферных растворов. При концентрациях компонентов выше 0, 1 моль/ л необходимо учитывать коэффициенты активности ионов системы.

2. Значение рК а любой кислоты и рК в любого основания можно вычислить по измеренному рН раствора, если известны молярные концентрации компонентов.

Кроме того, уравнение Гендерсона-Гассельбаха позволяет рассчитать рН буферного раствора, если известны значения рК а и молярные концентрации компонентов.

3. Уравнение Гендерсона-Гассельбаха можно использовать и для того, чтобы узнать, в каком соотношении нужно взят компоненты буферной смеси, чтобы приготовить раствор с заданным значением рН.

Способность буферного раствора сохранять рН по мере прибавления сильной кислоты или приблизительно на постоянном уровне далеко небеспредельна и ограничена величиной так называемой буферной емкости В . За единицу буферной емкости обычно принимают емкость такого буферного раствора, для изменения рН которого на единицу требуется введение сильной кислоты или щелочи в количестве 1 моль эквивалента на 1л раствора. Т. е. это величина, характеризующая способность буферного раствора противодействовать смещению реакции среды при добавлении сильных кислот или сильных оснований.

Буферная емкость, как следует из ее определения, зависит от ряда факторов:

Чем больше количества компонентов кислотно-основной пары основание/ сопряженная кислота в растворе, тем выше буферная емкость этого раствора (следствие закона эквивалентов).

Буферная емкость зависит от соотношения концентраций компонентов буферного раствора, а следовательно, и от рН буферного раствора.

При рН = рК а отношение с (соль)/ с (кислота) = 1, т. е. в растворе имеется одинаковое количество соли и кислоты. При таком соотношении концентраций рН раствора изменяется в меньшей степени, чем при других, и, следовательно, буферная емкость максимальна при равных концентрациях компонентов буферной системы и уменьшается с отклонением от этого соотношения. Буферная емкость раствора возрастает по мере увеличения концентрации его компонентов и приближения соотношения HAn/ KtAn или KtOH/ KtAn к единице.

Рабочий участок буферной системы, т. е. способность противодействовать изменению рН при добавлении кислот и щелочей, имеет протяженность приблизительно одну единицу рН с каждой стороны от точки рН = рК а . Вне этого интервала буферная емкость быстро падает до 0. Интервал рН = рК а 1 называется зоной буферного действия .

Общая буферная емкость артериальной крови достигает 25, 3 ммоль/ л; у венозной крови она несколько ниже и обычно не превышает 24, 3 ммоль/ л.

Кислотно-щелочное равновесие и

главные буферные системы в организме человека

Организм человека располагает тонкими механизмами координации происходящих в не физиологических и биохимических процессов и поддержания постоянства внутренней среды (оптимальных значений рН и уровней содержания различных веществ в жидкостях организма, температуры, кровяного давления и т. д.). Эта координация названа, по предложению В. Кеннона (1929), гомеостазисом (от греч. "гомео" - подобный; "стазис" - постоянство, состояние). Она осуществляется путем гуморальной регуляции (от лат. "гумор" - жидкость), т. е. через кров, тканевую жидкость, лимфу и т. д. с помощью биологически активных веществ (ферментов, гормонов и др.) при участии нервных регулирующих механизмов. Гуморальные и нервные компоненты тесно взаимосвязаны между собой, образуя единый комплекс нейро-гуморальной регуляции. Примером гомеостазиса является стремление организма к сохранению постоянства температуры, энтропии, энергии Гиббса, содержания в крови и межтканевых жидкостях различных катионов, анионов, растворенных газов и др., величины осмотического давления и стремление поддерживать для каждой из его жидкостей определенную оптимальную концентрацию ионов водорода. Сохранение постоянства кислотности жидких сред имеет для жизнедеятельности человеческого организма первостепенное значение, потому что, во-первых , ионы Н+ оказывают каталитическое действие на многие биохимические превращения; во-вторых , ферменты и гормоны проявляют биологическую активность только в строго определенном интервале значений рН; в-третьих , даже небольшие изменения концентрации ионов водорода в крови и межтканевых жидкостях ощутимо влияют на величину осмотического давления в этих жидкостях.

Нередко отклонения рН крови от нормального для нее значения 7,36 всего лишь на несколько сотых приводят к неприятным последствиям. При отклонениях порядка 0,3 единицы в ту или другую сторону может наступит тяжелое коматозное состояние, а отклонения порядка 0,4 единицы могут повлечь даже смертельный исход. Впрочем, в некоторых случаях, при ослабленном иммунитете, для этого оказывается достаточными и отклонения порядка 0,1 единицы рН.

Особенно большое значение буферных систем имеют в поддержании кислотно-основного равновесия организма. Внутриклеточные и внеклеточные жидкости всех живых организмов, как правило, характеризуются постоянным значением рН, которое поддерживается с помощью различных буферных систем. Значение рН большей части внутриклеточных жидкостей находится в интервале от 6,8 до 7,8.

Кислотно-основное равновесие в крови человека обеспечивается водородкарбонатной, фосфатной и белковой буферными системами.

Нормальное значение рН плазмы крови составляет 7,40 0,05. Этому соответствует интервал значений активной кислотности а (Н+) от 3,7 до 4,0 10-8 моль/л. Так как в крови присутствуют различные электролиты - НСО3-, Н2СО3, НРО42-, Н2РО4-, белки, аминокислоты, это означает, что они диссоциируют в такой степени, чтобы активность а (Н+) находилась в указанном интервале.

Водородкарбонатная (гидро-, бикарбонатная) буферная система НСО 3 - 2 СО 3 плазмы крови характеризуется равновесием молекул слабой угольной кислоты Н2СО3 с образующимися при ее диссоциации гидрокарбонат-ионами НСО3-(сопряженное основание):

НСО3- + Н+ Н2СО3

НСО3- + Н2О Н2СО3 + ОН-

В организме угольная кислота возникает в результате гидратации диоксида углерода - продукта окисления углеводов, белков и жиров. Причем процесс этот ускоряется под действием фермента карбоангидразы:

СО2(р) + Н2О Н2СО3

Равновесная молярная концентрация в растворе свободного диоксида углерода при 298, 15 К в 400 раз выше, чем концентрация угольной кислоты Н2СО3/ СО2 = 0, 00258.

Между СО2 в альвеолах и водородкарбонатным буфером в плазме крови, протекающей через капилляры легких, устанавливается цепочка равновесий:

Атмосфера СО2(г) СО2(р) Н2СО3 Н+ + НСО3-

воздушное пространство легких - Н2О плазма крови

В соответствии с уравнение Гендерсона-Гассельбаха (4) рН водордкарбонатного буфера определяется отношением концентрации кислоты Н2СО3 и соли NaНСО3.

Согласно цепочке равновесий содержание Н2СО3 определяется концентрацией растворенного СО2, которая по пропорциональна парциальному давлению СО2 в газовой фазе (по закону Генри): СО2р = Кгр (СО2). В конечно счете оказывается, что с (Н2СО3) пропорциональна р (СО2).

Водородкарбонатная буферная система действует как эффективный физиологический буферный раствор вблизи рН 7,4.

При поступлении в кровь кислот - доноров Н+ равновесие 3 в цепочке по принципу Ле Шателе смещается влево в результате того, что ионы НСО3- связывают ионы Н+ в молекулы Н2СО3. При этом концентрация Н2СО3 повышается, а концентрация ионов НСО3- соответственно понижается. Повышение концентрации Н2СО3, в свою очередь, приводит к смещению равновесия 2 влево. Это вызывает распад Н2СО3 и увеличении концентрации СО2, растворенного в плазме. В результате смещается равновесие 1 влево и повышается давление СО2 в легких. Избыток СО2 выводится из организма.

При поступлении в кровь оснований - акцепторов Н+ сдвиг равновесий в цепочке происходит в обратной последовательности.

В результате описанных процессов водородкарбонатная система крови быстро приходит в равновесие с СО2 в альвеолах и эффективно обеспечивает поддержание постоянства рН плазы крови.

Вследствие того, что концентрация NaНСО3 в крови значительно превышает концентрацию Н2СО3, буферная емкость этой системы будет значительно выше по кислоте. Иначе говоря, водокарбонатная буферная система особенно эффективно компенсирует действие веществ, увеличивающих кислотност крови. К числу таких веществ, прежде всего, относят молочную кислоту HLac, избыток которой образуется в результате интенсивной физической нагрузки. Этот избыток нейтрализуется в следующей цепочке реакций:

NaНСО3 + HLac NaLac + Н2СО3 Н2О + СО2(р) СО2(г)

Таким образом, эффективно поддерживается нормальное значение рН крови при слабо выраженном сдвиге рН, обусловленным ацидозом.

В замкнутых помещениях часто испытывают удушье - нехватку кислорода, учащение дыхания. Однако удушье связано не столько с недостатком кислорода, сколько с избытком СО2. Избыток СО2 в атмосфере приводит к дополнительному растворению СО2 в крови (согласно закону Генри), а это приводит к понижению рН крови, т. е. к ацидозу (уменьшение резервной щелочности).

Водородкарбонатная буферная система наиболее "быстро" отзывается на изменение рН крови. Ее буферная емкость по кислоте составляет В к = 40 ммоль/л плазмы крови, а буферная емкость по щелочи значительно меньше и равна примерно В щ = 1 - 2 ммоль/л плазмы крови.

2. Фосфатная буферная система НРО42-/Н2РО4- состоит из слабой кислоты Н2РО4- и сопряженного основания НРО42-. В основе ее действия лежит кислотно-основное равновесие, равновесие между гидрофофсфат- и дигидрофосфат-ионами:

НРО42- + Н+ Н2РО4-

НРО42- + Н2О Н2РО4- + ОН-

Фосфатная буферная система способа сопротивляться изменению рН в интервале 6, 2 - 8, 2, т. е. обеспечивает значительную долю буферной емкости крови.

Из уравнения Гендерсона-Гассельбаха (4) для этой уферной системы следует, что в норме при рН 7, 4 отношение концентраций соли (НРО42-) и кислоты (Н2РО4-) примерно составляет 1. 6. Это следует из равенства:

рН = 7, 4 = 7, 2 + lg

с (НРО42-)

Где 7, 2 = рК а (Н2РО4-)

с (Н2РО4-)

с (НРО42-)

7, 4 - 7, 2 = 0, 2 и

с (НРО42-)

с (Н2РО4-)

с (Н2РО4-)

Фосфорная буферная система имеет более высокую емкость по кислоте, чем по щелочи. Поэтому она эффективно нейтрализует кислые метаболиты, поступающие в кровь, например молочную кислоту HLac:

НРО42- + HLac Н2РО4- + Lac-

Однако различия буферной емкости данной системы по кислоте и щелочи не столь велики, как у водородкарбонатной: Вк = 1 -2 ммоль/ л; Вщ = 0, 5 ммоль/ л. Поэтому фосфатная система в нейтрализации как кислых, так и основных продуктов метаболизма. В связи с малым содержанием фосфатов в плазе крови она менее мощная, чем вородкарбонатная буферная система.

3. Буферная система оксигемоглобин-гемоглобин , на долю которой приходится около 75% буферной емкости крови, характеризующаяся равновесием между ионами гемоглобина Hb- и самим гемоглобином HНb, являющимся очень слабой кислотой (К HНb = 6, 3 10-9; рК HНb = 8, 2).

Hb- + Н2О HНb + ОН-

а также между ионами оксигемоглобина HbО2- и самим оксигемоглобином HНbО2, который является несколько более сильной, чем гемоглобин, кислотой (К HНbО2 = 1. 12 10-7; рК HНbО2 = 6, 95):

HbО2- + Н+ HНbО2

HbО2- + Н2О HНbО2 + ОН-

Гемоглобин HНb, присоединяя кислород, образует оксигемоглобин HНbО2

HНb + О2 HНbО2

и, таким образом, первые два равновесия взаимосвязаны со следующими двумя.

4. Белковая буферная система состоит из "белка-основания" и "белка-соли".

R - СН + Н+ R - СН

белок-основание белок-соль

Соответствующее кислотно-основное равновесие в средах, близких к нейтральным, смещено влево и "белок-основание" преобладает.

Основную часть белков плазмы крови (90%) составляют альбумины и глобулины. Изоэлектрические точки этих белков (число катионных и анионных групп одинаково, заряд молекулы белка равен нулю) лежат в слабокислой среде при рН 4,9 - 6,3, поэтому в физиологических условиях при рН 7,4 белки находятся преимущественно в формах "белок-основание" и "белок-соль".

Буферная емкость, определяемая белками плазмы, зависит от концентрации белков, их вторичной и третичной структуры и числа свободных протон-акцепторных групп. Эта система может нейтрализовать как кислые, так и основные продукты. Однако вследствие преобладания формы "белок-основание" ее буферная емкость значительно выше по кислоте и составляет для альбуминов В к = 10 ммоль/л, а для глобулинов В к = 3 ммоль/л.

Буферная емкость свободных аминокислот плазмы крови незначительна как по кислоте, так и по щелочи. Это связано с тем, что почти все аминокислоты имеют значения рК а , очень далекие от рК а = 7. Поэтому при физиологическом значении рН их мощность мала. Практически только одна аминокислота - гистидин (рК а = 6,0) обладает значительным буферным действием при значениях рН, близких к рН плазмы крови.

Таким образом, мощность буферных систем плазмы крови уменьшается в направлении

НСО3-/ Н2СО3 белки НРО42-/ Н2РО4- аминокислоты

Эритроциты . Во внутренней среде эритроцитов в норме поддерживается постоянное рН, равное 7,25. Здесь также действуют водородкарбонатная и фосфатная буферные системы. Однако их мощность отличается от таковой в плазме крови. Кроме того, в эритроцитах белковая система гемоглобин-оксигемоглобин играет важную роль как в процессе дыхания (транспортная функция по переносу кислорода к тканям и органам и удалению из них метаболической СО2), так и в поддержании постоянства рН внутри эритроцитов, а в результате и в крови в целом. Необходимо отметит, что эта буферная система в эритроцитах тесно связана с водородкарбонатной системой. Т. к. рН внутри эритроцитов 7,25, то соотношение концентраций соли (НСО3-) и кислоты (Н2СО3) здесь несколько меньше, чем в плазме крови. И хотя буферная емкость этой системы по кислоте внутри эритроцитов несколько меньше, чем в плазме, она эффективно поддерживает постоянство рН.

Фосфатная буферная емкость играет в клетках крови гораздо более важную роль, чем в плазме крови. Прежде всего, это связано с большим содержанием в эритроцитах неорганических фосфатов. Кроме того, большое значение в поддерживании постоянства рН имеют эфиры фосфорных кислот, главным образом фосфолипиды, составляющие основу мембран эритроцитов.

Фосфолипиды являются относительно слабыми кислотами. Значения рК а диссоциации фосфатных групп находятся в пределах от 6,8 до 7,2. Поэтому при физиологическом рН 7,25 фосфолипиды мембран эритроцитов находятся как в виде неионизированных, так ионизированных форм. Иначе говоря, в виде слабой кислоты и ее соли. При этом соотношение концентраций соли и слабой кислоты составляет примерно (1,5 - 4) : 1. Следовательно, сама мембрана эритроцитов обладает буферным действием, поддерживая постоянство рН внутренней среды эритроцитов.

Таким образом, в поддержании постоянства кислотно-щелочного равновесия в крови участвует ряд буферных систем, обеспечивающих кислотно-основной гомеостаз в организме.

В современной клинической практике кислотно-щелочное равновесие (КЩР) организма обычно определяют путем исследования крови по микрометоду Аструпа и выражают в единицах ВЕ (от лат. "би-эксцесс" - избыток оснований). При нормальном кислотно-щелочном состоянии организма ВЕ = 0 (в аппарате Аструпа этому значению ВЕ отвечает рН 7,4).

При значениях ВЕ от 0 до 3 КЩС организма считается нормальным, при ВЕ = (6 - 9) - тревожным, при ВЕ = (10 - 14) - угрожающим, а при абсолютном значении ВЕ, превышающим 14, - критическим.

Для коррекции КЩР при ВЕ0 (ацидоз) чаще используют 4%-ный раствор гидрокарбонаната натрия, который вводят внутривенно. Необходимый объем этого раствора в мл рассчитывают по эмпирической формуле v = 0,5m ВЕ, где m - масса тела, кг.

Если состояние ацидоза возникло в результате кратковременной остановки сердца, то объем 4%-ного раствора NаНСО3 (v мл), необходимый для компенсации сдвига КЩР в кислую область, рассчитывают по формуле v = m z, где z - продолжительность остановки сердца, мин.

Коррекция КЩР при алкалозе более сложна и требует учета многих привходящих обстоятельств. В качестве одной из временных мер целесообразно введение от 5 до 15 мл 5%-го раствора аскорбиновой кислоты.

Метод кислотно-основного титрования в одном из своих вариантов (алкалиметрия) позволяет определять количества кислот и кислотообразующих веществ (солей, составленных из катиона слабого основания и аниона сильной кислоты и т. п.) с помощью растворов щелочной известной концентрации, называемых рабочими. В другом варианте (ацидиметрия) этот метод позволяет определять количества оснований и веществ основного характера (оксидов, гидридов и нитридов металлов, органических аминов, солей, составленных из катионов сильных оснований и анионов слабых кислот и т. п.) с помощью рабочих растворов кислот.

Метод кислотно-основного титрования используется в практике клинических, судебно-экспертных и санитарно-гигиенических исследований, а также при оценке качества лекарственных препаратов.

Буферные системы крови обеспечивают постоянную величину рН при поступлении в нее кислых или основных продуктов. Они является первой «чертой охраны», которая поддерживает рН, пока продукты, которые поступили, не будут выведены или использованы в метаболических процессах.
В крови есть четыре буферные системы: гемоглобиновая, бикарбонатная а фосфатная, белковая. Каждая система состоит из двух соединений - слабой кислоты и соли этой кислоты и сильного основания. Буферный эффект обусловлен связыванием и нейтрализацией ионов, поступающих соответствующим составом буфера. В связи с тем что в естественных условиях организм чаще встречается с поступлением в кровь недоокисленных продуктов обмена, антикислотные свойства буферных систем преобладают по сравнению с антиосновными.

Бикарбонатный буфер крови

Бикарбонатный буфер крови достаточно мощный и наиболее мобильный. Роль его в поддержании параметров КОР крови увеличивается за счет связи с дыханием. Система состоит из Н 2 С0 3 и NaHC0 3 , что находятся друг от друга в соответствующей пропорции. Принцип ее функционирования заключается в том, что при поступлении кислоты, например молочной, которая сильнее, чем угольная, основной резерв обеспечивает процесс обмена ионами с образованием слабодисоциируемой угольной кислоты. Угольная кислота восполняет пул, который уже в крови, и сдвигает реакцию H 2 C0 3 C0 2 + Н 2 0 вправо.
Особенно активно этот процесс осуществляется в легких, где образованный С02 сразу выводится. Возникает своеобразная открытая система бикарбонатного буфера и легких, благодаря которой напряжение свободного С02 в крови поддерживается на постоянном уровне. Это в свою очередь обеспечивает поддержание рН в рови на постоянном уровне.
В случае поступления в кровь основы происходит реакция ее с кислотой. Связывание НСО 3 -приводит к дефициту С0 2 и уменьшение выделения его легкими. При этом увеличивается основной резерв буфера, что компенсируется за счет роста выделение NaCl почками.

Буферная система гемоглобина

Буферная система гемоглобина самая мощная.
На ее долю приходится более половины буферной емкости крови. Буферные свойства гемоглобина обусловлены соотношением восстановленного гемоглобина (ННЬ) и его калиевой соли (КНЬ). В слабощелочных растворов, каким является кровь, гемоглобин и оксигемоглобин имеют свойства кислот и является донаторами Н + или К + Эта система может функционировать самостоятельно, но в организме она тесно связана с предыдущей. Когда кровь находится в тканевых капиллярах, откуда поступают кислые продукты, гемоглобин выполняет функции основания:
КНЬ + Н2С03 -- ННЬ + КНС03.
В легких гемоглобин, напротив, ведет себя как кислота предотвращает защелощение крови после выделения углекислоты. Оксигемоглобин - сильнее кислота, чем дезоксигемоглобином. Гемоглобин, который освобождается, в тканях от О 2 , приобретает большую способность к связыванию, вследствие чего венозная кровь может связывать и накапливать С0 2 без существенного сдвига рН.

Белки плазмы

Белки плазмы благодаря способности аминокислот к ионизации также выполняют буферную функцию (около 7% буферной емкости крови). В кислой среде они ведут себя как основания, связывающие кислоты. В основном - наоборот, белки реагируют как кислоты, связывая основы. Эти свойства белков определяются боковыми группами. Особенно выражены буферные свойства в конечных карбокси-и аминогрупп цепей.

Фосфатная буферная система

Фосфатная буферная система (около 5% буферной емкости крови) образуется неорганическими фосфатами крови. Свойства кислоты проявляет одноосновный фосфат (NaH 2 P0 4), а основания - двухосновный фосфат (Na 2 HP0 4). Функционируют они по такому же принципу, как и бикарбонаты. Однако в связи с низким содержанием в крови фосфатов емкость этой системы невелика.

Для характеристики КОР крови введен ряд понятий. Буферная емкость - величина, определяемая отношением между количеством Н + или ОН-, добавленных к раствору, степени изменения его рН: чем меньше смещение рН, тем больше емкость. Сумма анионов всех слабых кислот называется буферными основаниями (ВВ). Содержание их в крови составляет около 48 ммоль / л. Отклонение по концентрации буферных оснований от нормы обозначается термином «излишек основ» (BE). То есть идеальным является BE около 0. В норме возможны колебания в пределах от -2,3 до +2,3 ммоль/л. Смещение в положительную сторону называется алкалозом , а в отрицательный - ацидозом . В случае алкалоза рН крови становится выше 7,43, в случае ацидоза - ниже 7,36.

Механизм регуляции КОР крови в целостном организме заключается в совместном действии внешнего дыхания, кровообращения, выделения и буферных систем. Так, если в результате повышенного образования Н 2 С0 3 или других кислот будут появляться излишки анионов, то они сначала нейтрализуются буферными системами. Параллельно интенсифицируется дыхание и кровообращение, что приводит к увеличению выделения углекислого газа легкими. Нелетучие кислоты в свою очередь выводятся с мочой или потом.

Наоборот, при увеличении содержания в крови основ снижается выделение С0 2 легкими (гиповентиляция) и Н + с мочой. Подключение систем дыхания, кровообращения и выделения к поддержанию КОР обусловлено соответствующими механизмами регуляции функции этих органов. Наконец, в норме рН крови может изменяться лишь на короткое время. Естественно, что при поражении легких или почек функциональные возможности организма по поддержанию КОР на должном уровне снижаются. В случае появления в крови большого количества кислых или основных ионов только буферные механизмы (без помощи систем выделения) не удержат рН на константной уровне. Это приводит к ацидозу или алкалозу.

Внутренней среды живых организмов.

Циркулирующая кровь представляет собой взвесь живых клеток в жидкой среде, химические свойства которой очень важны для их жизнедеятельности. У человека за норму принят диапазон колебаний pH крови 7,37-7,44 со средней величиной 7,4. Буферные системы крови слагаются из буферных систем плазмы и клеток крови и представлены следующими системами :

  • бикарбона́тная (водородкарбонатная) бу́ферная систе́ма;
  • фосфа́тная бу́ферная систе́ма;
  • белко́вая бу́ферная систе́ма;
  • гемоглоби́новая бу́ферная система
  • эритроциты

Помимо этих систем также активно участвуют дыхательная и мочевыделительная системы .

Энциклопедичный YouTube

    1 / 3

    ✪ Урок 1 - рН - КЩС под силу каждому

    ✪ Буферные растворы и уравнение Гендерсона-Гассельбаха

    ✪ Анализ КЩС в норме и его расшифровка

    Субтитры

Бикарбонатная буферная система

Одна из самых мощных и вместе с тем самая управляемая система внеклеточной жидкости и крови, на долю которой приходится около 53 % всей буферной ёмкости крови. Представляет собой сопряжённую кислотно-основную пару, состоящую из молекулы угольной кислоты H 2 CO 3 , являющейся источником протона, и бикарбонат-аниона HCO 3 − , выполняющего роль акцептора протона:

H 2 C O 3 ⇄ H C O 3 − + H + {\displaystyle {\mathsf {H_{2}CO_{3}\rightleftarrows HCO_{3}^{-}+H^{+}}}} Вследствие того, что концентрация гидрокарбоната натрия в крови значительно превышает концентрацию H 2 CO 3 , буферная ёмкость этой системы будет значительно выше по кислоте. Иначе говоря, гидрокарбонатная буферная система особенно эффективно компенсирует действие веществ, увеличивающих кислотность крови. К числу таких веществ прежде всего относят молочную кислоту , избыток которой образуется в результате интенсивной физической нагрузки. Гидрокарбонатная система наиболее «быстро» отзывается на изменение pH крови

Фосфатная буферная система

В крови ёмкость фосфатной буферной системы невелика (составляет около 2 % общей буферной ёмкости), в связи с низким содержанием фосфатов в крови. Фосфатный буфер выполняет значительную роль в поддержании физиологических значений рН во внутриклеточных жидкостях и моче.

Буфер образован неорганическими фосфатами. Роль кислоты в этой системе выполняет однозамещённый фосфат (NaH 2 PО 4), а роль сопряженного основания - двузамещённый фосфат (Na 2 HPО 4). При рН 7,4 соотношение [НРО 4 2- /Н 2 РО 4 - ] равняется 10 p H − p K a , o r t o I I = 1 , 55 {\displaystyle 10^{pH-pK_{a,orto}^{II}}=1,55} поскольку при температуре 25+273,15K pK a, орто II =7,21 , при этом средний заряд аниона ортофосфорной кислоты < q >=((-2)*3+(-1)*2)/5=-1,4 единиц заряда позитрона.

Буферные свойства системы при увеличении в крови содержания водородных ионов реализуются за счет их связывания с ионами НРО 4 2- с образованием Н 2 РО 4 - :

H + + H P O 4 2 − → H 2 P O 4 − {\displaystyle {\mathsf {H^{+}+HPO_{4}^{2-}\rightarrow H_{2}PO_{4}^{-}}}}

а при избытке ионов ОН- - за счет связывания их с ионами Н 2 РО 4 - :

H 2 P O 4 − + O H − ⇄ H P O 4 2 − + H 2 O {\displaystyle {\mathsf {H_{2}PO_{4}^{-}+OH^{-}\rightleftarrows HPO_{4}^{2-}+H_{2}O}}}

Фосфатная буферная система крови тесно взаимосвязана с бикарбонатной буферной системой.

Белковая буферная система

В сравнении с другими буферными системами имеет меньшее значение для поддержания кислотно-основного равновесия.(7-10 % буферной ёмкости)

Основную часть белков плазмы крови (около 90 %) составляют альбумины и глобулины. Изоэлектрические точки этих белков (число катионных и анионных групп одинаково, заряд молекулы белка равен нулю) лежат в слабокислой среде при pH 4,9-6,3 , поэтому в физиологических условиях при pH 7,4 белки находятся преимущественно в формах «белок-основание » и «белок-соль».

Введение

Буферные системы организма

Организм можно определить как физико-химическую систему, существующую в окружающей среде в стационарном состоянии. Именно эта способность живых систем сохранять стационарное состояние в условиях непрерывно меняющейся среды и обусловливает их выживание. Для обеспечения стационарного состояния у всех организмов – от морфологически самых простых до наиболее сложных – выработались разнообразные анатомические, физиологические и поведенческие приспособления, служащие одной цели – сохранению постоянства внутренней среды.

Это относительное динамическое постоянство внутренней среды (крови, лимфы, тканевой жидкости) и устойчивость основных физиологических функций (кровообращения, дыхания, терморегуляции, обмена веществ и т.д.) организма человека и животных называется гомеостазом.

Этот процесс осуществляется преимущественно деятельностью лёгких и почек за счёт дыхательной и выделительной функции. В основе гомеостаза лежит сохранение кислотно-основного баланса.

Основная функция буферных систем предотвращение значительных сдвигов рН путём взаимодействия буфера как с кислотой, так и с основанием. Действие буферных систем в организме направлено преимущественно на нейтрализацию образующихся кислот.

Н+ + буфер- <==> Н-буфер

В организме одновременно существует несколько различных буферных систем. В функциональном плане их можно разделить на бикарбонатную и небикарбонатную. Небикарбонатная буферная система включает гемоглобин, различные белки и фосфаты. Она наиболее активно действует в крови и внутри клеток.

Биологические буферные системы

Большинство биожиткостей организма способно сохранять значение pH при незначительных внешних воздействий, так как они являются буферными растворами.

Буферный раствор – это раствор, содержащий протолитическую равновесную систему, способную поддерживать практически постоянное значение pH при разбавлении или при добавлении небольших количеств кислот или щелочи.

В протолитических буферных растворах компонентами являются донор протона и акцептор протона, представляющие собой сопряженную кислотно- основную пару.

По принадлежности слабого электролита к классу кислот или оснований буферные системы делятся на кислотные и основные.

Кислотными буферными системами называются растворы, содержащие слабую кислоту (донор протона) и соль этой кислоты (акцептор протона). Кислотные буферные растворы могут содержать различные системы: ацетатную (CH3COO-, CH3COOH), гидрокарбонатную (HCO3-, H2CO3), гидрофосфатную(HPO22-, H2PO4-).

Основными буферными системами называются растворы, содержащие слабые основания (акцептор протона) и соль этого основания (донор протона).

Гидрокарбонатная буферная система

Гидрокарбонатная буферная система образована оксидом углерода (IV).

СО2 + Н2О- СО2 Н2О - Н2СО3- Н+ + НСО3-

В этой системе донором протона является угольная кислота H2CO3, а акцептором протона – гидрокарбонат-ион HCO3-.С учетом физиологии условно весь CO2в организме, как просто растворенный, так и гидратированный до угольной кислоты, принято рассматривать как угольную кислоту.

Угольная кислота при физиологическом значении pH= 7,40 находится преимущественно в виде моноаниона, а отношение концентраций компонентов в гидрокарбонатной буферной системе крови [ HCO3-]\ =20:1. Следовательно, гидрокарбонатная система имеет буферную емкость по кислоте значительно больше буферной емкости по основанию. Это отвечает особенностям нашего организма.

Если в кровь поступает кислота и увеличивается концентрация иона водорода, то он, взаимодействует с HCO3- , смещает в сторону H2CO3и приводит к выделению газообразного углекислого газа, который выделяется из организма в процессе дыхания через легкие.

Н+ + НСО3- - Н2СО3 - СО2^ + Н2О

При поступлении в кровь оснований, они связываются угольной кислотой, и равновесие смещается в сторону HCO3-.

ОН- + Н2СО3 - НСО3- + Н2О

Главное назначение гидрокарбонатного буфера заключается в нейтрализации кислот. Он является системой быстрого и эффективного реагирования, так как продукт его взаимодействия с кислотами – углекислый газ – быстро выводится через легкие. Нарушение кислотно- основного равновесия в организме прежде всего компенсируется с помощью гидрокарбонатной буферной системы (10-15 мин.)

Гидрокарбонатный буфер является основной буферной системой плазмы крови, обеспечивающей около 55% от всей буферной емкости крови. Гидрокарбонатный буфер содержится также в эритроцитах, межклеточной жидкости и в почечной ткани.

Гидрофосфатная буферная система

Гидрофосфатная буферная система содержится как в крови, так и в клеточной жидкости других тканей, особенно почек. В клетках она представлена К2НРО4 и КН2РО4 , а в плазме крови и межклеточной жидкости

Nа2НРО4и NаН2РО4. Роль донора протона в этой системе играет ион Н2РО4-, а акцептора – ион НРО42-.

В норме отношение форм [НРО42-]\[ Н2РО4-] =4:1. Следовательно, и эта система имеет буферную емкость по кислоте больше, чем по основанию. При увеличении концентрации катионов водорода во внутриклеточной жидкости, например в результате переработки мясной пищи, происходит их нейтрализация ионами НРО42-.

Н+ + НРО42- - Н2РО4-

Образующийся избыточный дигидрофосфат выводится почками, что приводит к снижению величины рН мочи.

При увеличении концентраций оснований в организме, например при употреблении растительной пищи, они нейтрализуются ионами Н2РО4-

ОН- + Н2РО4- - НРО42-+ Н2О

Образующийся избыточный гидрофосфат выводится почками, при этом рН мочи повышается.

В отличии от гидрокарбонатной, фосфатная система более « консервативная», так как избыточные продукты нейтрализации выводятся через почки и полное восстановление отношений [НРО42-]\[ Н2РО4-] происходит только через 2-3 сут. Длительности легочной и почечной компенсации нарушений отношения компонентов в буферных системах необходимо учитывать при терапевтической коррекции нарушений кислотно- основного равновесия организма.

Гемоглобиновая буферная система

гемоглобиновая буферная система является сложной буферной системой эритроцитов, которая включает в качестве донора протона две слабые кислоты: гемоглобин ННb и оксигемоглобин ННbО2. роль акцептора протона играет сопряженные этим кислотам основания, т.е. их анионы Нb- и НbО2-.

Н+ + Нb-ННb Н+ + НbО2- - ННb + О2

При добавлении кислот поглощать ионы Н+ в первую очередь будут анионы гемоглобина, которые имеют большое сродство к протону. При действии основания оксигемоглобин будет проявлять большую активность, чем гемоглобин.

ОН- + ННbО2 - НbО2- + Н2О ОН- + ННb- Нb- + Н2О

Таким образом, гемоглобиновая система крови играет значительную роль сразу в нескольких важнейших физиологических процессах организма: дыхании, транспорте кислорода в ткани и поддержании постоянства рН внутри эритроцитах, а конечном итоге - в крови. Эта система эффективно функционирует только в сочетании с другими буферными системами организма.

Белковые (протеиновые) буферные системы

Белковые буферные системы в зависимости от кислотно-основных свойств белка, характеризующиеся его изоэлектрической точкой, бывают анионного и катионного типа.

Анионный белковый буфер работает при рН>рIбелка и состоит из донора протонов – молекулы белка НРrot, имеющей биполярно- ионное строение, и акцептора протонов – анион Рrot-.

Н3N+ – Рrot – СООН - Н+ + Н3N – Рrot – СОО-

кратко Н2Рrot - Н+ + (НРrot)-

При добавлении кислоты это равновесие смещается в сторону образование молекулы белка, а при добавлении основания в системе увеличивается содержание аниона белка.

Катионная белковая буферная система работает при рН<рIбелка и состоит из донора протона – катиона белка Н2Рrot и акцептора протона - молекулы белка НРrot.

Н3N+ – Рrot – СООН- Н+ + Н3N – Рrot – СОО-

кратко (Н2Рrot)+ + НРrot

Катионная буферная система НРrot, (Н2Рrot)+ обычно поддерживает величину рН в физиологических средах с рН < 6, а анионная белковая буферная система (Рrot)- , НРrot – в средах с рН >6. В крови работает анионный белковый буфер.

Ацидоз

Ацидоз (от лат. acidus - кислый) - cмещение кислотно-щелочного баланса организма в сторону увеличения кислотности (уменьшению рН).

Причины ацидоза

Обычно продукты окисления органических кислот быстро удаляются из организма. При лихорадочных заболеваниях, кишечных расстройствах, беременности, голодании и др. они задерживаются в организме, что проявляется в лёгких случаях появлением в моче ацетоуксусной кислоты и ацетона (т. н. ацетонурия), а в тяжёлых (например, при сахарном диабете) может привести к коме.

характеризуется абсолютным или относительным избытком кислот, т.е. веществ, отдающих ионы водорода (протоны), по отношению к основаниям, присоединяющим их.

Ацидоз может быть компенсированным и некомпенсированным в зависимости от значения рН - водородного показателя биологической среды (обычно крови), выражающего концентрацию водородных ионов. При компенсированном ацидозе рН крови смещается к нижней границе физиологической нормы (7,35). При более выраженном сдвиге в кислую сторону (рН менее 7,35) ацидоз считается некомпенсированным. Такой сдвиг обусловлен значительным избытком кислот и недостаточностью физико-химических и физиологических механизмов регуляции кислотно-щелочного равновесия. (Кислотно-щелочное равновесие)

По происхождению А. может быть газовым, негазовым и смешанным. Газовый А. возникает вследствие альвеолярной гиповентиляции (недостаточного выведения СО2 из организма) либо в результате вдыхания воздуха или газовых смесей, содержащих повышенные концентрации углекислоты. При этом парциальное давление углекислого газа (рСО2) в артериальной крови превышает максимальные значения нормы (45 мм рт. ст.), т.е. имеет место гиперкапния.

Негазовый А. характеризуется избытком нелетучих кислот, первичным снижением содержания бикарбоната в крови и отсутствием гиперкапнии. Основными его формами являются метаболический, выделительный и экзогенный ацидоз.

Метаболический А. возникает вследствие накопления избытка кислых продуктов в тканях, недостаточного их связывания или разрушения; при увеличении продукции кетоновых тел (кетоацидоз), молочной кислоты (лактат-ацидоз) и других органических кислот. Кетоацидоз развивается чаще всего при сахарном диабете, а также при голодании (особенно углеводном), высокой лихорадке, тяжелой инсулиновой гипогликемии, при некоторых видах наркоза, алкогольной интоксикации, гипоксии, обширных воспалительных процессах, травмах, ожогах и др. Лактат-ацидоз встречается наиболее часто. Кратковременный лактат-ацидоз возникает при усиленной мышечной работе, особенно у нетренированных людей, когда увеличивается продукция молочной кислоты и происходит недостаточное ее окисление вследствие относительного дефицита кислорода. Длительный лактат-ацидоз отмечается при тяжелых поражениях печени (цирроз, токсическая дистрофия), декомпенсации сердечной деятельности, а также при уменьшении поступления кислорода в организм вследствие недостаточности внешнего дыхания и при других формах кислородного голодания. В большинстве случаев метаболический А. развивается в результате избытка в организме нескольких кислых продуктов.

Выделительный А. в результате уменьшения выведения из организма нелетучих кислот отмечается при заболеваниях почек (например, при хроническом диффузном гломерулонефрите), приводящих к затруднению удаления кислых фосфатов, органических кислот. Усиленное выведение с мочой ионов натрия, обусловливающее развитие почечного А., наблюдается в условиях торможения процессов ацидо- и аммониогенеза, например при длительном применении сульфаниламидных препаратов, некоторых мочегонных средств. Выделительный А. (гастроэнтеральная форма) может развиться при увеличенной потере оснований через желудочно-кишечный тракт, например при поносах, упорной рвоте забрасываемым в желудок щелочным кишечным соком, а также при длительно усиленном слюноотделении. Экзогенный А. наступает при введении в организм большого количества кислых соединений, в т.ч. некоторых лекарственных препаратов.

Развитие смешанных форм А. (сочетание газового и различных видов негазового А.) обусловлено, в частности, тем обстоятельством, что СО2 диффундирует через альвеолокапиллярные мембраны примерно в 25 раз легче, чем О2. Поэтому затруднение выделения СО2 из организма вследствие недостаточного газообмена в легких сопровождается снижением оксигенации крови и, следовательно, развитием кислородного голодания с последующим накоплением недоокисленных продуктов межуточного обмена (главным образом молочной кислоты). Такие формы А. наблюдаются при патологии сердечно-сосудистой или дыхательной систем.

Умеренный компенсированный А. протекает практически бессимптомно и распознается путем исследования буферных систем крови, а также состава мочи. При углублении А. одним из первых клинических симптомов является усиленное дыхание, которое затем переходит в резкую одышку, патологические формы дыхания. Некомпенсированный А. характеризуется значительными расстройствами функций ц.н.с., сердечно-сосудистой системы, желудочно-кишечного тракта и др. А. приводит к повышению содержания катехоламинов в крови, поэтому при его появлении сначала отмечается усиление сердечной деятельности, учащение пульса, повышение минутного объема крови, подъем АД. По мере углубления А. снижается реактивность адренорецепторов, и несмотря на повышенное содержание катехоламинов в крови, сердечная деятельность угнетается, АД падает. При этом нередко возникают различные виды сердечных аритмий, вплоть до фибрилляции желудочков. Кроме того, А. приводит к резкому усилению вагусных эффектов, вызывая бронхоспазм, увеличение секреции бронхиальных и пищеварительных желез; нередко возникают рвота, понос. При всех формах А. кривая диссоциации оксигемоглобина смещается вправо, т.е. сродство гемоглобина к кислороду и его оксигенация в легких уменьшаются.

В условиях А. изменяется проницаемость биологических мембран, часть ионов водорода перемещается внутрь клеток в обмен на ионы калия, которые отщепляются от белков в кислой среде. Развитие гиперкалиемии в сочетании с низким содержанием калия в миокарде приводит к изменению его чувствительности к катехоламинам, лекарственным препаратам и другим воздействиям. При некомпенсированном А. наблюдаются резкие расстройства функции ц.н.с. - головокружение, сонливость, потеря сознания и выраженные расстройства вегетативных функций.

Алкалоз

Алкало́з (позднелат. alcali щелочь, от арабск. al-quali) - нарушение кислотно-щелочного равновесия организма, характеризующееся абсолютным или относительным избытком оснований.

Классификация

Алкалоз может быть компенсированным и некомпенсированным.

Компенсированный алкалоз - нарушение кислотно-щелочного равновесия, при котором рН крови удерживается в пределах нормальных величин (7,35-7,45) и отмечаются лишь сдвиги в буферных системах и физиологических регуляторных механизмах.

При некомпенсированном алкалозе рН превышает 7,45, что обычно связано со значительным избытком оснований и недостаточностью физико-химических и физиологических механизмов регуляции кислотно-щелочного равновесия.

Этиология

По происхождению алкалоза выделяют следующие группы.

Газовый (респирато́рный) алкалоз

Возникает вследствие гипервентиляции лёгких, приводящей к избыточному выведению СО2 из организма и падению парциального напряжения двуокиси углерода в артериальной крови ниже 35 мм рт. ст., то есть к гипокапнии. Гипервентиляция лёгких может наблюдаться при органических поражениях головного мозга (энцефалиты, опухоли и др.), действии на дыхательный центр различных токсических и фармакологических агентов (например, некоторых микробных токсинов, кофеина, коразола), при повышенной температуре тела, острой кровопотере и др.

Негазовый алкалоз

Основными формами негазового алкалоз являются: выделительный, экзогенный и метаболический. Выделительный алкалоз может возникнуть, например, вследствие больших потерь кислого желудочного сока при желудочных свищах, неукротимой рвоте и др. Выделительный алкалоз может развиться при длительном приёме диуретиков, некоторых заболеваниях почек, а также при эндокринных расстройствах, приводящих к избыточной задержке натрия в организме. В некоторых случаях выделительный алкалоз связан с усиленным потоотделением.

Экзогенный алкалоз наиболее часто наблюдается при избыточном введении бикарбоната натрия с целью коррекции метаболического ацидоза или нейтрализации повышенной кислотности желудочного сока. Умеренный компенсированный алкалоз может быть обусловлен длительным употреблением пищи, содержащей много оснований.

Метаболический алкалоз встречается при некоторых патологических состояниях, сопровождающихся нарушениями обмена электролитов. Так, он отмечается при гемолизе, в послеоперационном периоде после некоторых обширных оперативных вмешательств, у детей, страдающих рахитом, наследственными нарушениями регуляции электролитного обмена.

Смешанный алкалоз

Смешанный алкалоз (сочетание газового и негазового алкалоза) может наблюдаться, например, при травмах головного мозга, сопровождающихся одышкой, гипокапнией и рвотой кислым желудочным соком.

Патогенез

При алкалозе (особенно связанном с гипокапнией) происходят общие и регионарные нарушения гемодинамики: уменьшается мозговой и коронарный кровоток, снижаются АД и минутный объем крови. Возрастает нервно-мышечная возбудимость, возникает мышечный гипертонус вплоть до развития судорог и тетании. Нередко наблюдается угнетение моторики кишечника и развитие запоров; снижается активность дыхательного центра. Для газового алкалоза характерно снижение умственной работоспособности, головокружение, могут возникать обморочные состояния.

Терапия газового алкалоза заключается в устранении причины, вызвавшей гипервентиляцию, а также в непосредственной нормализации газового состава крови путем вдыхания смесей, содержащих углекислый газ (например - карбогена). Терапия негазового алкалоза проводится в зависимости от его вида. Применяют растворы хлоридов аммония, калия, кальция, инсулин, средства, угнетающие карбоангидразу и способствующие выделению почками ионов натрия и гидрокарбоната

Заключение

В заключение следует отметить,что в организме человека вследствие процессов дыхания и пищеварения происходит постоянное образование двух противоположностей:кислот и оснований, причем преимущественно слабых, что обеспечивает равновесный характер протолитическим процессам,протекающим в организме. В то же время из организма постоянно выводятся кислотно-основные продукты, в основном через легкие и почки. За счет сбалансированности процессов поступления и выведения кислот и оснований,а также за счет равновесного характера протолитических процессов,определяющих взаимодействие этих двух противоположностей, в организме поддерживается состояние протолитического (кислотно-основного) гомеостаза.

Список используемой литературы:

    В.И.Слесарев «Химия: Основы химии живого: Учебник для вузов»-СПб: Химиздат,2000.

    В.А.Попков, С.А. Пузаков «Общая химия:учебник»-М.:ГЭОТАР-Медиа,2009.

    Ю.А.Ершов,В.А.Попков,А.С.Берлянд и др.; Под ред. Ю.А.Ершова «Общая химия. Биофизическая химия. Химия биогенных элементов»-М.: Высш.шк.,1993

Интернет-ресурсы:

«Алкалоз» , «Ацидоз»- http://ru.wikipedia.org/wiki