Как проверить что процесс марковский. Марковский процесс

Теория массового обслуживания составляет один из разделов теории вероятностей. В этой теории рассматриваются вероятностные задачи и математические модели (до этого нами рассматривались детерминированные математические модели). Напомним, что:

Детерминированная математическая модель отражает поведение объекта (системы, процесса) с позицийполной определенности в настоящем и будущем.

Вероятностная математическая модель учитывает влияние случайных факторов на поведение объекта (системы, процесса) и, следовательно, оценивает будущее с позиций вероятности тех или иных событий.

Т.е. здесь как, например, в теории игр задачи рассматриваются в условиях неопределенности .

Рассмотрим сначала некоторые понятия, которые характеризуют «стохастическую неопределенность», когда неопределенные факторы, входящие в задачу, представляют собой случайные величины (или случайные функции), вероятностные характеристики которых либо известны, либо могут быть получены из опыта. Такую неопределенность называют еще «благоприятной», «доброкачественной».

Понятие случайного процесса

Строго говоря, случайные возмущения присущи любому процессу. Проще привести примеры случайного, чем «неслучайного» процесса. Даже, например, процесс хода часов (вроде бы это строгая выверенная работа – «работает как часы») подвержен случайным изменениям (уход вперед, отставание, остановка). Но до тех пор, пока эти возмущения несущественны, мало влияют на интересующие нас параметры, мы можем ими пренебречь и рассматривать процесс как детерминированный, неслучайный.

Пусть имеется некоторая система S (техническое устройство, группа таких устройств, технологическая система – станок, участок, цех, предприятие, отрасль промышленности и т.д.). В системеS протекаетслучайный процесс , если она с течением времени меняет свое состояние (переходит из одного состояния в другое), причем, заранее неизвестным случайным образом.

Примеры: 1. СистемаS – технологическая система (участок станков). Станки время от времени выходят из строя и ремонтируются. Процесс, протекающий в этой системе, случаен.

2. Система S – самолет, совершающий рейс на заданной высоте по определенному маршруту. Возмущающие факторы – метеоусловия, ошибки экипажа и т.д., последствия – «болтанка», нарушение графика полетов и т.д.

Марковский случайный процесс

Случайный процесс, протекающий в системе, называется Марковским , если для любого момента времениt 0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный моментt 0 и не зависят от того, когда и как система пришла в это состояние.

Пусть в настоящий момент t 0 система находится в определенном состоянииS 0 . Мы знаем характеристики состояния системы в настоящеми все, что было приt <t 0 (предысторию процесса). Можем ли мы предугадать (предсказать) будущее, т.е. что будет приt >t 0 ? В точности – нет, но какие-то вероятностные характеристики процесса в будущем найти можно. Например, вероятность того, что через некоторое времясистемаS окажется в состоянииS 1 или останется в состоянииS 0 и т.д.

Пример . СистемаS – группа самолетов, участвующих в воздушном бою. Пустьx – количество «красных» самолетов,y – количество «синих» самолетов. К моменту времениt 0 количество сохранившихся (не сбитых) самолетов соответственно –x 0 ,y 0 . Нас интересует вероятность того, что в момент временичисленный перевес будет на стороне «красных». Эта вероятность зависит от того, в каком состоянии находилась система в момент времениt 0 , а не от того, когда и в какой последовательности погибали сбитые до моментаt 0 самолеты.

На практике Марковские процессы в чистом виде обычно не встречаются. Но имеются процессы, для которых влиянием «предистории» можно пренебречь. И при изучении таких процессов можно применять Марковские модели (в теории массового обслуживания рассматриваются и не Марковские системы массового обслуживания, но математический аппарат, их описывающий, гораздо сложнее).

В исследовании операций большое значение имеют Марковские случайные процессы с дискретными состояниями и непрерывным временем.

Процесс называется процессом с дискретным состоянием , если его возможные состоянияS 1 ,S 2 , … можно заранее определить, и переход системы из состояния в состояние происходит «скачком», практически мгновенно.

Процесс называется процессом с непрерывным временем , если моменты возможных переходов из состояния в состояние не фиксированы заранее, а неопределенны, случайны и могут произойти в любой момент.

Пример . Технологическая система (участок)S состоит из двух станков, каждый из которых в случайный момент времени может выйти из строя (отказать), после чего мгновенно начинается ремонт узла, тоже продолжающийся заранее неизвестное, случайное время. Возможны следующие состояния системы:

S 0 - оба станка исправны;

S 1 - первый станок ремонтируется, второй исправен;

S 2 - второй станок ремонтируется, первый исправен;

S 3 - оба станка ремонтируются.

Переходы системы S из состояния в состояние происходят практически мгновенно, в случайные моменты выхода из строя того или иного станка или окончания ремонта.

При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой – графом состояний . Вершины графа – состояния системы. Дуги графа – возможные переходы из состояния в

Рис.1. Граф состояний системы

состояние. Для нашего примера граф состояний приведен на рис.1.

Примечание. Переход из состояния S 0 вS 3 на рисунке не обозначен, т.к. предполагается, что станки выходят из строя независимо друг от друга. Вероятностью одновременного выхода из строя обоих станков мы пренебрегаем.

Лекция 9

Марковские процессы
Лекция 9
Марковские процессы



1

Марковские процессы

Марковские процессы
Случайный процесс, протекающий в системе, называется
марковским, если он обладает отсутствием последствия. Т.е.
если рассматривать текущее состояние процесса (t 0) - как
настоящее, совокупность возможных состояний { (s),s t} - как
прошлое, совокупность возможных состояний { (u),u t} - как
будущее, то для марковского процесса при фиксированном
настоящем будущее не зависит от прошлого, а определяется
лишь настоящим и не зависит от того, когда и как система
пришла в это состояние.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
2

Марковские процессы

Марковские процессы
Марковские случайные процессы названы по имени выдающегося русского математика А.А.Маркова, впервые начавшего изучение вероятностной связи случайных величин
и создавшего теорию, которую можно назвать "динамикой
вероятностей". В дальнейшем основы этой теории явились
исходной базой общей теории случайных процессов, а также таких важных прикладных наук, как теория диффузионных процессов, теория надежности, теория массового обслуживания и т.д.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
3

Марков Андрей Андреевич Марков Андрей Андреевич Марков Андрей Андреевич

Марковские процессы
Марков Андрей Андреевич
1856-1922
Русский математик.
Написал около 70 работ по
теории
чисел,
теории
приближения функций, теории
вероятностей. Существенно расширил сферу применения закона
больших чисел и центральной
предельной теоремы. Является
основоположником теории случайных процессов.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
4

Марковские процессы

Марковские процессы
На практике марковские процессы в чистом виде обычно
не встречаются. Но имеются процессы, для которых влиянием «предыстории» можно пренебречь, и при изучении
таких процессов можно применять марковские модели. В
настоящее время теория марковских процессов и ее приложения широко применяются в самых различных областях.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
5

Марковские процессы

Марковские процессы
Биология: процессы рождения и гибели - популяции, мутации,
эпидемии.
Физика:
радиоактивные
распады,
теория
счетчиков
элементарных частиц, процессы диффузии.
Химия:
теория
следов
в
ядерных
фотоэмульсиях,
вероятностные модели химической кинетики.
Images.jpg
Астрономия: теория флуктуационной
яркости млечного пути.
Теория массового обслуживания: телефонные станции,
ремонтные мастерские, билетные кассы, справочные бюро,
станочные и другие технологические системы, системы управления
гибких производственных систем, обработка информации серверами.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
6

Марковские процессы

Марковские процессы
Пусть в настоящий момент t0 система находится в
определенном состоянии S0. Мы знаем характеристики
состояния системы в настоящем и все, что было при t < t0
(предысторию процесса). Можем ли мы предсказать будущее,
т.е. что будет при t > t0?
В точности – нет, но какие-то вероятностные характеристики
процесса в будущем найти можно. Например, вероятность того,
что через некоторое время
система S окажется в состоянии
S1 или останется в состоянии S0 и т.д.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
7

Марковские процессы. Пример.

Марковские процессы
Марковские процессы. Пример.
Система S – группа самолетов, участвующих в воздушном бою. Пусть x – количество
«красных» самолетов, y – количество «синих» самолетов. К моменту времени t0 количество сохранившихся (не сбитых) самолетов
соответственно – x0, y0.
Нас интересует вероятность того, что в момент времени
t 0 численный перевес будет на стороне «красных». Эта вероятность зависит от того, в каком состоянии находилась система
в момент времени t0, а не от того, когда и в какой последовательности погибали сбитые до момента t0 самолеты.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
8

Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Марковский процесс с конечным или счетным числом
состояний и моментов времени называется дискретной
цепью Маркова. Переходы из состояния в состояние возможны только в целочисленные моменты времени.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
9

10. Дискретные цепи Маркова. Пример

Марковские процессы

Предположим,
что
речь
идет
о
последовательных бросаниях монеты при
игре "в орлянку"; монета бросается в
условные моменты времени t =0, 1, ... и на
каждом шаге игрок может выиграть ±1 с
одинаковой
вероятностью
1/2,
таким
образом в момент t его суммарный выигрыш есть случайная величина ξ(t) с возможными значениями j = 0, ±1, ... .
При условии, что ξ(t) = k, на следующем шаге выигрыш будет
уже равен ξ(t+1) = k ± 1, принимая значения j = k ± 1 c одинаковой вероятностью 1/2. Можно сказать, что здесь с соответствующей вероятностью происходит переход из состояния ξ(t) = k в состояние ξ(t+1) = k ± 1.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
10

11. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Обобщая этот пример, можно представить себе систему со
счетным числом возможных состояний, которая с течением
дискретного времени t = 0, 1, ... случайно переходит из состояния в состояние.
Пусть ξ(t) есть ее положение в момент t в результате цепочки случайных переходов
ξ(0) -> ξ(1) -> ... -> ξ(t) -> ξ(t+1) ->...-> ... .
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
11

12. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой – графом
состояний. Вершины графа – состояния системы. Дуги графа
– возможные переходы из состояния в состояние.
Игра «в орлянку».
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
12

13. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Обозначим все возможные состояния целыми i = 0, ±1, ...
Предположим, что при известном состоянии ξ(t) =i на следующем шаге система переходит в состояние ξ(t+1) = j с условной вероятностью
P{ (t 1) j (t) i}
независимо от ее поведения в прошлом, точнее, независимо
от цепочки переходов до момента t:
P{ (t 1) j (t) i; (t 1) it 1;...; (0) i0 }
P{ (t 1) j (t) i}
Это свойство называется марковским.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
13

14. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Число
pij P{ (t 1) j (t) i}
называется вероятностью
перехода системы из состояния i в состояние j за один шаг в
момент времени t 1.
Если переходная вероятность не зависит от t , то цепь
Маркова называется однородной.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
14

15. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Матрица P , элементами которой являются вероятности
перехода pij , называется переходной матрицей:
p11 ... p1n
P p 21 ... p 2n
p
n1 ... p nn
Она является стохастической, т.е.
pij 1 ;
i
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
p ij 0 .
15

16. Дискретные цепи Маркова. Пример

Марковские процессы
Дискретные цепи Маркова. Пример
Матрица переходов для игры «в орлянку»
...
k 2
k 2
0
k 1
1/ 2
k
0
k 1
k
k 1
k 2
0
1/ 2
0
0
1/ 2
0
1/ 2
0
1/ 2
0
0
0
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
...
k 1 k 2
0
0
0
1/ 2
0
1/ 2
...
0
0
1/ 2
0
16

17. Дискретные цепи Маркова. Пример

Марковские процессы
Дискретные цепи Маркова. Пример
Садовник в результате химического анализа почвы оценивает
ее состояние одним из трех чисел - хорошее (1), удовлетворительное (2) или плохое (3). В результате наблюдений на протяжении многих лет садовник заметил,
что продуктивность почвы в текущем
году зависит только от ее состояния в
предыдущем году. Поэтому вероятности
перехода почвы из одного состояния в
другое можно представить следующей
цепью Маркова с матрицей P1:
0.20 0.50 0.30
0.00 0.50 0.50
0.00 0.00 1.00
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
17

18. Дискретные цепи Маркова. Пример

Марковские процессы
Дискретные цепи Маркова. Пример
Однако в результате агротехнических мероприятий садовник может изменить переходные вероятности в матрице P1.
Тогда матрица P1 заменится
на матрицу P2:
0.30 0.60 0.10
0.10 0.60 0.30
0.05 0.40 0.55
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
18

19. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Рассмотрим, как изменяются состояния процесса с течением времени. Будем рассматривать процесс в последовательные моменты времени, начиная с момента 0. Зададим начальное распределение вероятностей p(0) { p1 (0),..., pm (0)} , где m число состояний процесса, pi (0) - вероятность нахождения
процесса в состоянии i в начальный момент времени. Вероятность pi (n) называется безусловной вероятностью состояния
i в момент времени n 1.
Компоненты вектора p (n) показывают, какие из возможных состояний цепи в момент времени n являются наиболее
вероятными.
m
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
pk (n) 1
k 1
19

20. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Знание последовательности { p (n)} при n 1,... позволяет составить представление о поведении системы во времени.
В системе с 3-мя состояниями
p11 p12 p13
P p21
p
31
p22
p32
p23
p33
p2 (1) p1 (0) p12 p2 (0) p22 p3 (0) p32
p2 (n 1) p1 (n) p12 p2 (n) p22 p3 (n) p32
В общем случае:
p j (1) pk (0) pkj
p j (n 1) pk (n) pkj
k
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
k
p(n 1) p(n) P
20

21. Дискретные цепи Маркова. Пример

Марковские процессы
Дискретные цепи Маркова. Пример
Матрица
0.20 0.50 0.30
0.00 0.50 0.50
0.00 0.00 1.00
Шаг
{ p (n)}
n
0
1, 0, 0
n
1
0.2 , 0.5 , 0.3
n
2
0.04 , 0.35 , 0.61
n
3
0.008 , 0.195 , 0.797
n
4
0.0016 , 0.1015 , 0.8969
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
21

22. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
n
Матрица перехода за n шагов P(n) P .
0.20 0.50 0.30
0.00 0.50 0.50
0.00 0.00 1.00
p(2) p(0) P
2
p (2)
P(2) P 2
1, 0, 0
0.0016
0.
0.
0.0016
0.
0.
0.1015
0.0625
0.
0.1015
0.0625
0.
0.8969
0.9375
1.
0.8969
0.9375
1.
0.04 , 0.35 , 0.61
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
22

23. Дискретные цепи Маркова

Марковские процессы
Дискретные цепи Маркова
Как ведут себя марковские цепи при n ?
Для однородной марковской цепи при определенных условиях выполняется следующее свойство: p (n) при n .
Вероятности 0 не зависят от начального распределения
p(0) , а определяются только матрицей P . В этом случае называется стационарным распределением, а сама цепь – эргодической. Свойство эргодичности означает, что по мере увеличения n
вероятность состояний практически перестаёт изменяться, а система переходит в стабильный режим функционирования.
i
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
23

24. Дискретные цепи Маркова. Пример

Марковские процессы
Дискретные цепи Маркова. Пример
0.20 0.50 0.30
0.00 0.50 0.50
0.00 0.00 1.00
0 0 1
P() 0 0 1
0 0 1
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
p () (0,0,1)
24

25. Дискретные цепи Маркова. Пример

Марковские процессы
Дискретные цепи Маркова. Пример
0.30 0.60 0.10
0.10 0.60 0.30
0.05 0.40 0.55
0.1017 0.5254 0.3729
P() 0.1017 0.5254 0.3729
0.1017 0.5254 0.3729
p () (0.1017,0.5254,0.3729)
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
25

26. Марковские процессы с непрерывным временем

Марковские процессы

Процесс называется процессом с непрерывным временем, если
моменты возможных переходов из состояния в состояние не фиксированы заранее, а неопределенны, случайны и могут произойти
в любой момент.
Пример. Технологическая система S состоит из двух устройств,
каждое из которых в случайный момент времени может выйти из
строя, после чего мгновенно начинается ремонт узла, тоже продолжающийся заранее неизвестное, случайное время.
Возможны следующие состояния системы:
S0 - оба устройства исправны;
S1 - первое устройство ремонтируется, второе исправно;
S2 - второе устройство ремонтируется, первое исправно;
S3 - оба устройства ремонтируются.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
26

27. Марковские процессы с непрерывным временем

Марковские процессы
Марковские процессы с непрерывным временем
Переходы системы S из состояния в состояние происходят
практически мгновенно, в случайные моменты выхода из строя
того или иного устройства или
окончания ремонта.
Вероятностью одновременного
выхода из строя обоих устройств
можно пренебречь.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
27

28. Потоки событий

Марковские процессы
Потоки событий
Поток событий – последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени.
– это среднее число событий,
Интенсивность потока событий
приходящееся на единицу времени.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
28

29. Потоки событий

Марковские процессы
Потоки событий
Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени.
В частности, интенсивность
стационарного потока постоянна. Поток событий неизбежно имеет сгущения или разрежения, но они не носят закономерного характера, и среднее число событий, приходящееся на единицу времени, постоянно и от времени не зависит.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
29

30. Потоки событий

Марковские процессы
Потоки событий
Поток событий называется потоком без последствий, если для
любых двух непересекающихся участков времени и число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой. Другими словами, это означает, что события, образующие поток, появляются в те или иные моменты
времени независимо друг от друга и вызваны каждое своими собственными причинами.
Поток событий называется ординарным, если вероятность появления на элементарном участке t двух и более событий пренебрежимо мала по сравнению с вероятностью появления одного
события, т.е. события в нем появляются поодиночке, а не группами по нескольку сразу
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
30

31. Потоки событий

Марковские процессы
Потоки событий
Поток событий называется простейшим (или стационарным пуассоновским), если он обладает сразу тремя свойствами: 1) стационарен, 2) ординарен, 3) не имеет последствий.
Простейший поток имеет наиболее простое математическое описание. Он играет среди потоков такую же особую
роль, как и закон нормального распределения среди других
законов распределения. А именно, при наложении достаточно большого числа независимых, стационарных и ординарных
потоков (сравнимых между собой по интенсивности) получается поток, близкий к простейшему.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
31

32. Потоки событий

Марковские процессы
Потоки событий
Для простейшего потока с интенсивностью
интервал
времени T между соседними событиями имеет показательное
распределение с плотностью
p(x) e x , x 0 .
Для случайной величины T, имеющей показательное распределение, математическое ожидание есть величина, обратная параметру.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
32

33. Марковские процессы с непрерывным временем

Марковские процессы
Марковские процессы с непрерывным временем
Рассматривая процессы с дискретными состояниями и непрерывным временем, можно считать, что все переходы системы S из состояния в состояние происходят под действием
простейших потоков событий (потоков вызовов, потоков отказов, потоков восстановлений и т.д.).
Если все потоки событий, переводящие систему S из состояния в состояние простейшие, то процесс, протекающий в
системе, будет марковским.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
33

34. Марковские процессы с непрерывным временем

Марковские процессы
Марковские процессы с непрерывным временем
Пусть на систему, находящуюся в состоянии, действует
простейший поток событий. Как только появится первое событие этого потока, происходит «перескок» системы из состояния
в состояние.
- интенсивность потока событий, переводящий систему
из состояния
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
в
.
34

35. Марковские процессы с непрерывным временем

Марковские процессы
Марковские процессы с непрерывным временем
Пусть рассматриваемая система S имеет
возможных состояний
. Вероятность p ij (t) является вероятностью перехода из состояния i в состояние j за время t.
Вероятность i - го состояния
- это вероятность того,
что в момент времени t система будет находиться в состоянии
. Очевидно, что для любого момента времени сумма
всех вероятностей состояний равна единице:
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
35

36. Марковские процессы с непрерывным временем

Марковские процессы
Марковские процессы с непрерывным временем
Для нахождения всех вероятностей состояний
как
функций времени составляются и решаются дифференциальные уравнения Колмогорова – особого вида уравнения, в которых неизвестными функциями являются вероятности состояний.
Для переходных вероятностей:
p ij (t) p ik (t) kj
k
Для безусловных вероятностей:
p j (t) p k (t) kj
k
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
36

37. Колмогоров Андрей Николаевич

Марковские процессы
Колмогоров Андрей Николаевич
1903-1987
Великий русский
математик.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
37

38. Марковские процессы с непрерывным временем

Марковские процессы
Марковские процессы с непрерывным временем
- интенсивности потока отказов;
- интенсивности потока восстановлений.
Пусть система находится в состоянии
S0. В состояние S1 ее переводит поток
отказов первого устройства. Его интенсивность равна
где
- среднее время безотказной работы устройства.
Из состояния S1 в S0 систему переводит поток восстановлений
первого устройства. Его интенсивность равна
где
- среднее время ремонта первого станка.
Аналогично вычисляются интенсивности потоков событий, переводящих систему по всем дугам графа.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
38

39. Системы массового обслуживания

Марковские процессы

Примеры систем массового обслуживания (СМО): телефонные станции, ремонтные мастерские,
билетные
кассы,
справочные
бюро,
станочные и другие технологические системы,
системы
управления
гибких
производственных систем,
обработка информации серверами и т.д.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
39

40. Системы массового обслуживания

Марковские процессы
Системы массового обслуживания
СМО состоит из какого – то количества обслуживающих
единиц, которые называются каналами обслуживания (это
станки, роботы, линии связи, кассиры и т.д.). Всякая СМО
предназначена для обслуживания потока заявок (требований), поступающих в случайные моменты времени.
Обслуживание заявки продолжается случайное время, после чего канал освобождается и готов к приему следующей
заявки.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
40

41. Системы массового обслуживания

Марковские процессы
Системы массового обслуживания
Процесс работы СМО – случайный процесс с дискретными
состояниями и непрерывным временем. Состояние СМО меняется скачком в моменты появления каких - то событий
(прихода новой заявки, окончания обслуживания, момента,
когда заявка, которой надоело ждать, покидает очередь).
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
41

42. Системы массового обслуживания

Марковские процессы
Системы массового обслуживания
Классификация систем массового обслуживания
1. СМО с отказами;
2. СМО с очередью.
В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем не
обслуживается.
В СМО с очередью заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь и ожидает возможности быть обслуженной.
СМО с очередями подразделяются на разные виды в зависимости
от того, как организована очередь – ограничена или не ограничена. Ограничения могут касаться как длины очереди, так и времени
ожидания, «дисциплины обслуживания».
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
42

43. Системы массового обслуживания

Марковские процессы
Системы массового обслуживания
Предмет теории массового обслуживания – построение
математических моделей, связывающих заданные условия
работы СМО (число каналов, их производительность, правила
работы, характер потока заявок) с интересующими нас характеристиками – показателями эффективности СМО. Эти показатели описывают способность СМО справляться с потоком
заявок. Ими могут быть: среднее число заявок, обслуживаемых СМО в единицу времени; среднее число занятых каналов; среднее число заявок в очереди; среднее время ожидания обслуживания и т.д.
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»
43

44.

СПАСИБО
ЗА ВНИМАНИЕ!!!
44

45. Построить граф переходов

Марковские процессы
Построить граф переходов
0.30
0.70
0.0
0.10
0.60
0.30
0.50
0.50
0.0
ХНУРЕ, каф. ПМ, лектор Кириченко Л.О.
«Теория вероятностей, математическая
статистика и случайные процессы»

Под случайным процессом понимают изменение во времени состояний некоторой физической системы заранее неизвестным случайным образом. При этом под физической системой будем понимать любое техническое устройство, группу устройств, предприятие, отрасль, биологическую систему и т.д.

Случайный процесс протекающий в системе называется Марковским – если для любого момента времени ,вероятностные характеристики процесса в будущем (t > ) зависят только от его состояния в данный момент времени (в настоящем ) и не зависят от того, когда и как система пришла в это состояние в прошлом .(Например, счетчик Гейгера, регистрирующий число космических частиц).

Марковские процессы принято делить на 3 вида:

1. Марковская цепь – процесс, состояния которого дискретны (т.е. их можно перенумеровать), и время, по которому он рассматривается, также дискретно (т.е. процесс может менять свои состояния только в определенные моменты времени). Такой процесс идет (изменяется) по шагам (иначе - по тактам).

2. Дискретный марковский процесс – множество состояний дискретно (можно перечислить), а время непрерывно (переход из одного состояния в другое – в любой момент времени).

3. Непрерывный марковский процесс – множество состояний и время -непрерывные.

На практике Марковские процессы в чистом виде встречаются не часто. Однако нередко приходится иметь место с процессами, для которых влиянием предыстории можно пренебречь. Кроме того, если все параметры из «прошлого»,от которых зависит «будущее» включить в состоянии системы в «настоящем», то ее также можно рассматривать как Марковскую. Однако это часто приводит к значительному росту числа учитываемых переменных и невозможности получить решение задачи.

В исследование операций большое значение занимают так называемые Марковские случайные процессы с дискретными состояниями и непрерывным временем .

Процесс называется процессом с дискретными состояниями , если все его возможные состояния , ,... можно заранее перечислить (перенумеровать). Переход системы из состояния в состояние переходит практически мгновенно –скачком.

Процесс называется процессом с непрерывным временем , если моменты перехода из состояния в состояние могут принимать любые случайные значения на временной оси.

Например : Техническое устройство S состоит из двух узлов , каждый из которых в случайный момент времени может выйти из строя (отказать ). После этого мгновенно начинается ремонт узла (восстановление ),который продолжается случайное время.

Возможны следующие состояния системы:

Оба узла исправны;

Первый узел ремонтируется,второй исправен.


– второй узел ремонтируется,первый исправен

Оба узла ремонтируются.

Переход системы из состояния в состояние происходит в случайные моменты времени практически мгновенно. Состояния системы и связь между ними удобно отобразить с помощью графа состояний .

Состояния


Переходы

Переходы и отсутствуют т.к. отказы и восстановления элементов происходят независимо и случайно и вероятность одновременного выхода из строя (восстановления) двух элементов бесконечно мала и ею можно пренебречь.

Если все потоки событий, переводящие систему S из состояния в состояние –простейшие , то процесс, протекающий в такой системе будетМарковским . Это обуславливается тем, что простейший поток не обладает последействием, т.е. в нем «будущее» не зависит от «прошлого» и, кроме того, он обладает свойством ординарности – вероятность одновременного появления двух и более событий бесконечно мала, т.е невозможен переход из состояния в состояние, минуя несколько промежуточных состояний.

Для наглядности на графе состояний удобно у каждой стрелки перехода проставить интенсивность того потока событий, который переводит систему из состояния в состояние по данной стрелке ( -интенсивность потока событий, переводящего систему из состояния в . Такой граф называется размеченным.

Используя размеченный граф состояний системы можно построить математическую модель данного процесса.

Рассмотрим переходы системы из некоторого состояния в предыдущее или последующее . Фрагмент графа состояний в этом случае будет выглядеть следующим образом:

Пусть система в момент времени t находится в состоянии .

Обозначим (t)- вероятность i-ого состояния системы – вероятность того, что система в момент времени t находится в состоянии . Для любого момента времени t справедливо =1.

Определим вероятность того, что и в момент времени t+∆t система будет находиться в состоянии . Это может быть в следующих случаях:

1) и за время ∆ t из него не вышла. Это означает, что за время ∆t не возникло события, переводящего систему в состояние (поток с интенсивностью ) или события, переводящего её в состояние (поток с интенсивностью ). Определим вероятность этого при малых ∆t.

При экспоненциальном законе распределения времени между двумя соседними требованиями, соответствующему простейшему потоку событий вероятность того, что на интервале времени ∆t не возникнет ни одного требования в потоке с интенсивностью λ 1 будет равна

Разлагая функцию f(t) в ряд Тейлора (t>0) получим (для t=∆t)

f(∆t)=f(0)+ (0)* ∆t + *∆ + *∆ +…=

= +(-l) *∆t+ (∆ + *(∆ +…»1-l*∆t при ∆t®0

Аналогично для потока с интенсивностью λ 2 получим .

Вероятность, что на интервале времени ∆t (при ∆t®0) не возникнет ни одного требования будет равна

(∆t)/ = (∆t/ * (∆t/ = (1- *∆t)(1- *∆t) =

1 - - *∆t + 1 - ( + )*∆t + б.м.

Таким образом, вероятность того, что система за время ∆t не вышла из состояния , при малых ∆t будет равна

P( / )=1 – ( + )* ∆t

2) Система находилась в состоянии S i -1 и за время перешла в состояние S i . То есть в потоке с интенсивностью возникло хотя бы одно событие. Вероятность этого равна для простейшего потока с интенсивностью λ будет

Для нашего случая вероятность такого перехода будет равна

3)Система находилась в состоянии и за время ∆tперешла в состояние . Вероятность этого будет

Тогда вероятность, что система в момент времени (t+∆t) будет в состоянии S i равна

Вычтем из обеих частей P i (t), разделим на ∆tи, перейдя к пределу, при ∆t→0, получим

Подставив соответствующие значения интенсивностей переходов из состояний в состояния, получим систему дифференциальных уравнений, описывающих изменение вероятностей состояний системы как функций времени.

Данные уравнения называются уравнениями Колмогорова-Чепмена для дискретного марковского процесса.

Задав начальные условия (например, P 0 (t=0)=1,P i (t=0)=0 i≠0) и решив их, получим выражения для вероятностей состояния системы как функций времени. Аналитические решения достаточно просто получить, если число уравнений ≤ 2,3. Если их больше, то обычно решают уравнения численно- на ЭВМ (например методом Рунге-Кутта).

В теории случайных процессов доказано , что если число n состояний системы конечно и из каждого из них можно (за конечное число шагов) перейти в любое другое, то существует предел , к которому стремятся вероятности при t→ . Такие вероятности называются финальными вероятностями состояний, а установившийся режим - стационарным режимом функционирования системы.

Так как в стационарном режиме все , следовательно, все =0. Приравняв в системе уравнений левые части 0 и, дополнив их уравнением =1, получим систему линейных алгебраических уравнений, решив которую найдём значения финальных вероятностей.

Пример. Пусть в нашей системе интенсивности отказов и восстановления элементов следующие

Отказы 1эл:

2эл:

Ремонт 1эл:

2эл:


P 0 +P 1 +P 2 +P 3 =1

0=-(1+2)P 0 +2P 1 +3 P 2

0=-(2+2)P 1 +1P 0 +3P 3

0=-(1+3)P 2 +2P 0 +2P 3

0=-(2+3)P 3 +2P 1 +1P 2

Решив данную систему, получим

P 0 =6/15=0.4; P 1 =3/15=0.2; P 2 =4/15=0.27; P 3 =2/15≈0.13.

Т.е. в стационарном состоянии система в среднем

40% находится в состоянии S 0 (оба узла исправны),

20%- в состоянии S 1 (1-й эл-т ремонтируется, 2-й исправен),

27%- в состоянии S 2 (2-й эл-тремонтируется, 1исправен),

13%- в состоянии S 3 – оба эл-та в ремонте.

Знание финальных вероятностей позволяет оценить среднюю эффективность работы системы и загрузку службы ремонта.

Пусть система в состоянии S 0 приносит доход 8 усл.ед. в единицу времени; в состоянии S 1 -доход 3 усл.ед.; в состоянии S 2 - доход 5;в состоянии S 3 -доход=0

Стоимость ремонта в единицу времени для эл-та 1- 1(S 1, S 3) усл.ед., эл-та 2- (S 2, S 3) 2 усл.ед. Тогда в стационарном режиме:

Доход системы в единицу времени будет:

W дох =8P 0 +3P 1 +5P 2 +0P 3 =8·0.4+3·0.2+5·0.27+0·0.13=5.15 усл.ед.

Стоимость ремонта в ед. времени:

W рем =0P 0 +1P 1 +2P 2 +(1+2)P 3 =0·0.4+1·0.2+2·0.27+3·0.13=1.39 усл.ед.

Прибыль в единицу времени

W= W дох -W рем =5.15-1.39=3.76 усл.ед

Проведя определённые расходы можно изменить интенсивности λи μ и, соответственно, эффективность системы. Целесообразность таких расходов можно оценить, проведя пересчёт P i . и показателей эффективности системы.

Случайным процессом называется множество или семейство случайных величин, значения которых индексируются временным параметром. Например, число студентов в аудитории, атмосферное давление или температура в этой аудитории как функции времени являются случайными процессами.

Случайные процессы находят широкое применение при изучении сложных стохастических систем как адекватные математические модели процесса функционирования таких систем.

Основными понятиями для случайных процессов являются понятия состояния процесса иперехода его из одного состояния в другое.

Значения переменных, которые описывают случайный процесс, в данный момент времени называются состоянием случайного процесса . Случайный процесс совершает переход из одного состояния в другое, если значения переменных, задающих одно состояние, изменяются на значения, которые определяют другое состояние.

Число возможных состояний (пространство состояний) случайного процесса может быть конечным или бесконечным. Если число возможных состояний конечно или счетно (всем возможным состояниям могут быть присвоены порядковые номера), то случайный процесс называется процессом с дискретными состояниями . Например, число покупателей в магазине, число клиентов в банке в течение дня описываются случайными процессами с дискретными состояниями.

Если переменные, описывающие случайный процесс, могут принимать любые значения из конечного или бесконечного непрерывного интервала, а, значит, число состояний несчетно, то случайный процесс называется процессом с непрерывными состояниями . Например, температура воздуха в течение суток является случайным процессом с непрерывными состояниями.

Для случайных процессов с дискретными состояниями характерны скачкообразные переходы из одного состояния в другое, тогда, как в процессах с непрерывными состояниями переходы являются плавными. Далее будем рассматривать только процессы с дискретными состояниями, которых часто называют цепями .

Обозначим через g (t ) случайный процесс с дискретными состояниями, а возможные значенияg (t ), т.е. возможные состояния цепи, - через символыE 0 , E 1 , E 2 , … . Иногда для обозначения дискретных состояний используют числа 0, 1, 2,... из натурального ряда.

Случайный процесс g (t ) называетсяпроцессом с дискретным временем , если переходы процесса из состояния в состояние возможны только в строго определенные, заранее фиксированные моменты времениt 0 , t 1 , t 2 , … . Если переход процесса из состояния в состояние возможен в любой, заранее неизвестный момент времени, то случайный процесс называетсяпроцессом с непрерывным временем . В первом случае, очевидно, что интервалы времени между переходами являются детерминированными, а во втором - случайными величинами.

Процесс с дискретным временем имеет место либо, когда структура системы, которая описывается этим процессом, такова, что ее состояния могут изменяться только в заранее определенные моменты времени, либо когда предполагается, что для описания процесса (системы) достаточно знать состояния в определенные моменты времени. Тогда эти моменты можно пронумеровать и говорить о состоянии E i в момент времени t i .

Случайные процессы с дискретными состояниями могут изображаться в виде графа переходов (или состояний), в котором вершины соответствуют состояниям, а ориентированные дуги - переходам из одного состояния в другое. Если из состояния E i возможен переход только в одно состояниеE j , то этот факт на графе переходов отражается дугой, направленной из вершиныE i в вершинуE j (рис.1,а). Переходы из одного состояния в несколько других состояний и из нескольких состояний в одно состояние отражается на графе переходов, как показано на рис.1,б и 1,в.

Для системы массового обслуживания характерен случайный процесс. Изучение случайного процесса, протекающего в системе, выражение его математически и является предметом теории массового обслуживания.

Математический анализ работы системы массового обслуживания значительно облегчается, если случайный процесс этой работы является марковским. Процесс, протекающий в системе, называется марковским, если в любой момент времени вероятность любого состояния системы в будущем зависит только от состояния системы в текущий момент и не зависит от того, каким образом система пришла в это состояние. При исследовании экономических систем наибольшее применение имеют марковские случайные процессы с дискретными и непрерывными состояниями.

Случайный процесс называется процессом с дискретными состояниями, если все его возможные состояния можно заранее перечислить, а сам процесс состоит в том, что время от времени система скачком переходит из одного состояния в другое.

Случайный процесс называется процессом с непрерывным состоянием, если для него характерен плавный, постепенный переход из состояния в состояние.

Также можно выделить марковские процессы с дискретным и непрерывным временем. В первом случае переходы системы из одного состояния в другое возможны только в строго определенные, заранее фиксированные моменты времени. Во втором случае переход системы из состояния в состояние возможен в любой, заранее неизвестный, случайный момент. Если вероятность перехода не зависит от времени, то марковский процесс называют однородным.

В исследовании систем массового обслуживания большое значение имеют случайные марковские процессы с дискретными состояниями и непрерывным временем.

Исследование марковских процессов сводится к изучению матриц переходных вероятностей (). Каждый элемент такой матрицы (поток событий) представляет собой вероятность перехода из заданного состояния (которому соответствует строка) к следующему состоянию (которому соответствует столбец). В этой матрице предусмотрены все возможные переходы данного множества состояний. Следовательно, процессы, которые можно описывать и моделировать с помощью матриц переходных вероятностей, должны обладать зависимостью вероятности конкретного состояния от непосредственно предшествующего состояния. Так выстраивается цепь Маркова. При этом цепью Маркова первого порядка называется процесс, для которого каждое конкретное состояние зависит только от его предшествующего состояния. Цепью Маркова второго и более высоких порядков называется процесс, в котором текущее состояние зависит от двух и более предшествующих.

Ниже представлены два примера матриц переходных вероятностей.

Матрицы переходных вероятностей можно изобразить графами переходных состояний, как показано на рисунке.

Пример

Предприятие выпускает продукт, насытивший рынок. Если предприятие от реализации продукта в текущем месяце получит прибыль (П), то с вероятностью 0,7 получит прибыль и в следующем месяце, а с вероятностью 0,3 – убыток. Если в текущем месяце предприятие получит убыток (У), то с вероятностью 0,4 в следующем месяце оно получит прибыль, а с вероятностью 0,6 – убыток (вероятностные оценки получены в результате опроса экспертов). Рассчитать вероятностную оценку получения прибыли от реализации товара через два месяца работы предприятия.

В матричной форме эта информация будет выражена следующим образом (что соответствует примеру матрицы 1):

Первая итерация – построение матрицы двухступенчатых переходов.

Если предприятие в текущем месяце получит прибыль, то вероятность того, что в следующем месяце оно снова получит прибыль, равна

Если предприятие в текущем месяце получит прибыль, то вероятность того, что в следующем месяце оно получит убыток, равна

Если предприятие в текущем месяце получит убыток, то вероятность того, что в следующем месяце оно получит прибыль, равна

Если предприятие в текущем месяце получит убыток, то вероятность того, что в следующем месяце оно вновь получит убыток, равна

В результате расчетов получаем матрицу двухступенчатых переходов:

Результат достигается перемножением матрицы т,на матрицу с такими же значениями вероятностей:

Для проведения этих процедур в среде Excel необходимо выполнить следующие действия:

  • 1) формировать матрицу;
  • 2) вызывать функцию МУМНОЖ;
  • 3) указывать первый массив – матрицу;
  • 4) указывать второй массив (эта же матрица или другая);
  • 5) ОК;
  • 6) выделить зону новой матрицы;
  • 7) F2;
  • 8) Ctrl+Shift+Enter;
  • 9) получить новую матрицу.

Вторая итерация – построение матрицы трехступенчатых переходов. Аналогично рассчитываются вероятности получения прибыли или убытка на следующем шаге и рассчитывается матрица трехступенчатых переходов, она имеет следующий вид:

Таким образом, в ближайшие два месяца работы предприятия вероятность получения прибыли от выпуска продукта выше, по сравнению с вероятностью получения убытка. Однако следует заметить, что вероятность получения прибыли падает, поэтому предприятию необходимо осуществить разработку нового продукта для замены производимого продукта.