Ранг единичной матрицы равен. Найти ранг матрицы: способы и примеры

Рассмотрим матрицу А размера .

А=
Выделим в нейkстрок иkстолбцов (
).

Определение 26: Минором k-го порядка матрицы А называется определитель квадратной матрицы, получающийся из данной выделением в ней.

kстрок иkстолбцов.

Определение 27: Рангом матрицы называется наибольший из порядков, отличных от нуля, ее миноров,r(A).

Определение 28: Минор, порядок которого совпадает с рангом называетсябазисным минором .

Утверждение:

1. Ранг выражается целым числом.(
)

2. r=0,
, когда А – нулевая.

Элементарные преобразования матриц.

К элементарным преобразованиям матриц относятся следующие:

1) умножение всех элементов какой-либо строки (столбца) матрицы на одно и то же число.

2) прибавление к элементам какой-либо строки (столбца) матрицы соответствующих элементов другой строки (столбца) умноженные на одно и то же число;

3) перестановка местами строк (столбцов) матрицы;

4) отбрасывание нулевой строки (столбца);

5) замена строк матрицы соответствующими столбцами.

Определение 29: Матрицы, получающиеся одна из другой, при элементарных преобразованиях называется эквивалентными матрицами, обозначаются “ ~“

Основное свойство эквивалентных матриц: Ранги эквивалентных матриц равны.

Пример 18: Вычислитьr(A),

Решение: Первую строку умножим поэтапно на (-4)(-2)

(-7) и затем прибавим соответственно к второй, третьей и четвертой строкам.

~

поменяем местами вторую и четвертую строки
вторую строку умножим на (-2) и прибавим к четвертой строке; сложим вторую и третью строки.

сложим третью и четвертую строки.

~
откинем нулевую строку

~
r(A)=3
ранг исходной матрицы

равен трем.

Определение 30: Назовем матрицу А ступенчатой, если все элементы главной диагонали0, а элементы под главной диагональю равны нулю.

Предложение :

1) ранг ступенчатой матрицы равен числу ее строк;

2) всякая матрица может быть приведена к ступенчатому виду с помощью элементарных преобразований.

Пример 19: При каких значениях  матрица
имеет ранг, равный единице?

Решение: Ранг равен единице, если определитель второго порядка равен нулю, т.е.

§6. Системы линейных уравнений общего вида.

Система вида
---(9) называется системой общего вида.

Определение 31: Две системы называются равносильными (эквивалентными), если каждое решение первой системы являются решением второй и наоборот.

В системе (1) матрицу А=
назовем основной матрицей системы, а=
расширенной матрицей системы

Теорема. Кронекера-Капелли

Для совместности системы (9) необходим и достаточно, чтобы ранг основной матрицы системы равнялся рангу расширенной матрицы, т. е. r(A)=r()

Теорема 1. Если ранг матрицы совместной системы равен числу неизвестных, то система имеет единственное решение.

Теорема 2. Если ранг матрицы совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений.

Правило решения произвольной системы линейных уравнений:

1)найти ранги основной и расширенной матриц системы. Если
, то система не совместна.

2) Если
=r, то система совместна. Найти какой-либо базисный минор порядкаr. Базисным будем называть минор, на основании которого определялся ранг матрицы.

Неизвестные, коэффициенты которых входят в базисный минор, называют главными (базисными) и оставляют слева, а остальные неизвестные называют свободными и переносят в правую часть уравнения.

3)Найти выражения главных неизвестных через свободные. Получено общее решение системы.

Пример 20: Исследовать систему и в случае ее совместности найти или единственное или общее решение

Решение: 1) по Т. Кронекера-Капелли находим ранги расширенной и основной матриц системы:

~
~

~
~
ранг основной матрицы равен двум

2) находим ранг расширенной матрицы
~
~
~

3) Вывод:
=2, то система совместна.

Но

система неопределенная и имеет бесчисленное множество решений.

4) Базисные неизвестные и, т. к. они принадлежат базисному минору, а- свободная неизвестная.

Пусть =с, где с – любое число.

5)Последней матрице соответствует система


6)Ответ:

7) Проверка: в любое из уравнений исходной системы, где присутствуют все неизвестные, подставляем найденные значения.

В каждой матрице можно связать два ранга: строчный ранг (ранг системы строк) и столбцовый ранг (ранг системы столбцов).

Теорема

Строчный ранг матрицы равен её столбцовому рангу.

Ранг матрицы

Определение

Рангом матрицы $A$ называется ранг её системы строк или столбцов.

Обозначается $\operatorname{rang} A$

На практике для нахождения ранга матрицы используют следующее утверждение: ранг матрицы равен количеству ненулевых строк после приведения матрицы к ступенчатому виду.

Элементарные преобразования над строками (столбцами) матрицы не меняют её ранга.

Ранг ступенчатой матрицы равен количеству её ненулевых строк.

Пример

Задание. Найти ранг матрицы $ A=\left(\begin{array}{cccc}{0} & {4} & {10} & {1} \\ {4} & {8} & {18} & {7} \\ {10} & {18} & {40} & {17} \\ {1} & {7} & {17} & {3}\end{array}\right) $

Решение. С помощью элементарных преобразований над ее строками приведем матрицу $A$ к ступенчатому виду. Для этого вначале от третьей строки отнимем две вторых:

$$ A \sim \left(\begin{array}{cccc}{0} & {4} & {10} & {1} \\ {4} & {8} & {18} & {7} \\ {2} & {2} & {4} & {3} \\ {1} & {7} & {17} & {3}\end{array}\right) $$

От второй строки отнимаем четвертую строку, умноженную на 4; от третьей - две четвертых:

$$ A \sim \left(\begin{array}{rrrr}{0} & {4} & {10} & {1} \\ {0} & {-20} & {-50} & {-5} \\ {0} & {-12} & {-30} & {-3} \\ {1} & {7} & {17} & {3}\end{array}\right) $$

Ко второй строке прибавим пять первых, к третьей - три третьих:

$$ A \sim \left(\begin{array}{cccc}{0} & {4} & {10} & {1} \\ {0} & {0} & {0} & {0} \\ {0} & {0} & {0} & {0} \\ {1} & {7} & {17} & {3}\end{array}\right) $$

Меняем местами первую и вторую строчки:

$$ A \sim \left(\begin{array}{cccc}{0} & {0} & {0} & {0} \\ {0} & {4} & {10} & {1} \\ {0} & {0} & {0} & {0} \\ {1} & {7} & {17} & {3}\end{array}\right) $$

$$ A \sim \left(\begin{array}{cccc}{1} & {7} & {17} & {3} \\ {0} & {4} & {10} & {1} \\ {0} & {0} & {0} & {0} \\ {0} & {0} & {0} & {0}\end{array}\right) \Rightarrow \operatorname{rang} A=2 $$

Ответ. $ \operatorname{rang} A=2 $

Метод окаймления миноров

На этой теореме базируется еще один метод нахождения ранга матрицы - метод окаймления миноров . Суть этого метода заключается в нахождении миноров, начиная с низших порядков и двигаясь к более высоким. Если минор $n$-го порядка не равен нулю, а все миноры $n+1$-го равны нулю, то ранг матрицы будет равен $n$ .

Пример

Задание. Найти ранг матрицы $ A=\left(\begin{array}{rrrr}{1} & {2} & {-1} & {-2} \\ {2} & {4} & {3} & {0} \\ {-1} & {-2} & {6} & {6}\end{array}\right) $ , используя метод окаймления миноров.

Решение. Минорами минимального порядка являются миноры первого порядка, которые равны элементам матрицы $A$ . Рассмотрим, например, минор $ M_{1}=1 \neq 0 $ . расположенный в первой строке и первом столбце. Окаймляем его с помощью второй строки и второго столбца, получаем минор $ M_{2}^{1}=\left| \begin{array}{ll}{1} & {2} \\ {2} & {4}\end{array}\right|=0 $ ; рассмотрим еще один минор второго порядка, для этого минор $M_1$ окаймляем при помощи второй строки и третьего столбца, тогда имеем минор $ M_{2}^{2}=\left| \begin{array}{rr}{1} & {-1} \\ {2} & {3}\end{array}\right|=5 \neq 0 $ , то есть ранг матрицы не меньше двух. Далее рассматриваем миноры третьего порядка, которые окаймляют минор $ M_{2}^{2} $ . Таких миноров два: комбинация третьей строки со вторым столбцом или с четвертым столбцом. Вычисляем эти миноры.

Число r называется рангом матрицы A , если:
1) в матрице A есть минор порядка r , отличный от нуля;
2) все миноры порядка (r+1) и выше, если они существуют, равны нулю.
Иначе, ранг матрицы – это наивысший порядок минора, отличного от нуля.
Обозначения: rangA , r A или r .
Из определения следует, что r – целое положительное число. Для нуль-матрицы считают ранг равным нулю.

Назначение сервиса . Онлайн-калькулятор предназначен для нахождения ранга матрицы . При этом решение сохраняется в формате Word и Excel . см. пример решения .

Инструкция . Выберите размерность матрицы, нажмите Далее.

Определение . Пусть дана матрица ранга r . Любой минор матрицы, отличный от нуля и имеющий порядок r, называется базисным, а строки и столбцы его составляющие – базисными строками и столбцами.
Согласно этому определению, матрица A может иметь несколько базисных миноров.

Ранг единичной матрицы E равен n (количеству строк).

Пример 1 . Даны две матрицы , и их миноры , . Какой из них можно принять в качестве базисного?
Решение . Минор M 1 =0, поэтому он не может быть базисным ни для одной из матриц. Минор M 2 =-9≠0 и имеет порядок 2, значит его можно принять в качестве базисного матриц A или / и B при условии, что они имеют ранги, равные 2 . Поскольку detB=0 (как определитель с двумя пропорциональными столбцами), то rangB=2 и M 2 можно взять за базисный минор матрицы B. Ранг матрицы A равен 3, в силу того, что detA=-27≠0 и, следовательно, порядок базисного минора этой матрицы должен равняться 3, то есть M 2 не является базисным для матрицы A . Отметим, что у матрицы A единственный базисный минор, равный определителю матрицы A .

Теорема (о базисном миноре). Любая строка (столбец) матрицы является линейной комбинацией ее базисных строк (столбцов).
Следствия из теоремы.

  1. Всякие (r+1) столбцов (строк) матрицы ранга r линейно зависимы.
  2. Если ранг матрицы меньше числа ее строк (столбцов), то ее строки (столбцы) линейно зависимы. Если rangA равен числу ее строк (столбцов), то строки (столбцы) линейно независимы.
  3. Определитель матрицы A равен нулю тогда и только тогда, когда ее строки (столбцы) линейно зависимы.
  4. Если к строке (столбцу) матрицы прибавить другую строку, (столбец) умноженную на любое число, отличное от нуля, то ранг матрицы не изменится.
  5. Если в матрице зачеркнуть строку (столбец), являющуюся линейной комбинацией других строк (столбцов), то ранг матрицы не изменится.
  6. Ранг матрицы равен максимальному числу ее линейно независимых строк (столбцов).
  7. Максимальное число линейно независимых строк совпадает с максимальным числом линейно независимых столбцов.

Пример 2 . Найти ранг матрицы .
Решение. Исходя из определения ранга матрицы, будем искать минор наивысшего порядка, отличный от нуля. Сначала преобразуем матрицу к более простому виду. Для этого первую строку матрицы умножим на (-2) и прибавим ко второй, затем ее же умножим на (-1) и прибавим к третьей.

В данной статье пойдет речь о таком понятии, как ранг матрицы и необходимых дополнительных понятиях. Мы приведем примеры и доказательства нахождения ранга матрицы, а также расскажем, что такое минор матрицы, и почему он так важен.

Минор матрицы

Чтобы понять, что такое ранг матрицы, необходимо разобраться с таким понятием, как минор матрицы.

Определение 1

Минор k -ого порядка матрицы - определитель квадратной матрицы порядка k×k, которая составлена из элементов матрицы А, находящихся в заранее выбранных k-строках и k-столбцах, при этом сохраняется положение элементов матрицы А.

Проще говоря, если в матрице А вычеркнуть (p-k) строк и (n-k) столбцов, а из тех элементов, которые остались, составить матрицу, сохраняя расположение элементов матрицы А, то определитель полученной матрицы и есть минор порядка k матрицы А.

Из примера следует, что миноры первого порядка матрицы А и есть сами элементы матрицы.

Можно привести несколько примеров миноров 2-ого порядка. Выберем две строки и два столбца. Например, 1-ая и 2 –ая строка, 3-ий и 4-ый столбец.

При таком выборе элементов минором второго порядка будет - 1 3 0 2 = (- 1) × 2 - 3 × 0 = - 2

Другим минором 2-го порядка матрицы А является 0 0 1 1 = 0

Предоставим иллюстрации построения миноров второго порядка матрицы А:

Минор 3-го порядка получается, если вычеркнуть третий столбец матрицы А:

0 0 3 1 1 2 - 1 - 4 0 = 0 × 1 × 0 + 0 × 2 × (- 1) + 3 × 1 × (- 4) - 3 × 1 × (- 1) - 0 × 1 × 0 - 0 × 2 × (- 4) = - 9

Иллюстрация, как получается минор 3-го порядка матрицы А:

Для данной матрицы миноров выше 3-го порядка не существует, потому что

k ≤ m i n (p , n) = m i n (3 , 4) = 3

Сколько существует миноров k-ого порядка для матрицы А порядка p×n?

Число миноров вычисляют по следующей формуле:

C p k × C n k , г д е С p k = p ! k ! (p - k) ! и C n k = n ! k ! (n - k) ! - число сочетаний из p по k, из n по k соответственно.

После того, как мы определились, что такое миноры матрицы А, можно переходить к определению ранга матрицы А.

Ранг матрицы: методы нахождения

Определение 2

Ранг матрицы - наивысший порядок матрицы, отличный от нуля.

Обозначение 1

Rank (A), Rg (A), Rang (A).

Из определения ранга матрицы и минора матрицы становиться понятно, что ранг нулевой матрицы равен нулю, а ранг ненулевой матрицы отличен от нуля.

Нахождение ранга матрицы по определению

Определение 3

Метод перебора миноров - метод, основанный на определении ранга матрицы.

Алгоритм действий способом перебора миноров :

Необходимо найти ранг матрицы А порядка p × n . При наличии хотя бы одного элемента, отличного от нуля, то ранг матрицы как минимум равен единице (т.к. есть минор 1-го порядка, который не равен нулю ).

Далее следует перебор миноров 2-го порядка. Если все миноры 2-го порядка равны нулю, то ранг равен единице. При существовании хотя бы одного не равного нулю минора 2-го порядка, необходимо перейти к перебору миноров 3-го порядка, а ранг матрицы, в таком случае, будет равен минимум двум.

Аналогичным образом поступим с рангом 3-го порядка: если все миноры матрицы равняются нулю, то ранг будет равен двум. При наличии хотя бы одного ненулевого минора 3-го порядка, то ранг матрицы равен минимум трем. И так далее, по аналогии.

Пример 2

Найти ранг матрицы:

А = - 1 1 - 1 - 2 0 2 2 6 0 - 4 4 3 11 1 - 7

Поскольку матрица ненулевая, то ее ранг минимум равен единице.

Минор 2-го порядка - 1 1 2 2 = (- 1) × 2 - 1 × 2 = 4 отличен от нуля. Отсюда следует, что ранг матрицы А не меньше двух.

Перебираем миноры 3-го порядка: С 3 3 × С 5 3 = 1 5 ! 3 ! (5 - 3) ! = 10 штук.

1 1 - 1 2 2 6 4 3 11 = (- 1) × 2 × 11 + 1 × 6 × 4 + (- 1) × 2 × 3 - (- 1) × 2 × 4 - 1 × 2 × 11 - (- 1) × 6 × 3 = 0

1 - 1 - 2 2 6 0 4 11 1 = (- 1) × 6 × 1 + (- 1) × 0 × 4 + (- 2) × 2 × 11 - (- 2) × 6 × 4 - (- 1) × 2 × 1 - (- 1) × 0 × 11 = 0

1 1 - 2 2 2 0 4 3 1 = (- 1) × 2 × 1 + 1 × 0 × 4 + (- 2) × 2 × 3 - (- 2) × 2 × 4 - 1 × 2 × 1 - (- 1) × 0 × 3 = 0

1 - 1 0 2 6 - 4 4 11 - 7 = (- 1) × 6 × (- 7) + (- 1) × (- 4) × 4 + 0 × 2 × 11 - 0 × 6 × 4 - (- 1) × 2 × (- 7) - (- 1) × (- 4) × 11 = 0

1 - 1 0 2 6 - 4 3 11 - 7 = 1 × 6 × (- 7) + (- 1) × (- 4) × 3 + 0 × 2 × 11 - 0 × 6 × 3 - (- 1) × 2 × (- 7) - 1 × (- 4) × 11 = 0

1 - 2 0 2 0 - 4 3 1 - 7 = 1 × 0 × (- 7) + (- 2) × (- 4) × 3 + 0 × 2 × 1 - 0 × 0 × 3 - (- 2) × 2 × (- 7) - 1 × (- 4) × 1 = 0

1 - 2 0 6 0 - 4 11 1 - 7 = (- 1) × 0 × (- 7) + (- 2) × (- 4) × 11 + 0 × 6 × 1 - 0 × 0 × 11 - (- 2) × 6 × (- 7) - (- 1) × (- 4) × 1 = 0

Миноры 3-го порядка равны нулю, поэтому ранг матрицы равен двум.

Ответ : Rank (A) = 2.

Нахождение ранга матрицы методом окаймляющих миноров

Определение 3

Метод окаймляющих миноров - метод, который позволяет получить результат при меньшей вычислительной работе.

Окаймляющий минор - минор M o k (k + 1) -го порядка матрицы А, который окаймляет минор M порядка k матрицы А, если матрица, которая соответствует минору M o k , «содержит» матрицу, которая соответствует минору М.

Проще говоря, матрица, которая соответствует окаймляемому минору М, получается из матрицы, соответствующей окаймляющему минору M o k , вычеркиванием элементов одной строки и одного столбца.

Пример 3

Найти ранг матрицы:

А = 1 2 0 - 1 3 - 2 0 3 7 1 3 4 - 2 1 1 0 0 3 6 5

Для нахождения ранга берем минор 2-го порядка М = 2 - 1 4 1

Записываем все окаймляющие миноры:

1 2 - 1 - 2 0 7 3 4 1 , 2 0 - 1 0 3 7 4 - 2 1 , 2 - 1 3 0 7 1 4 1 1 , 1 2 - 1 3 4 1 0 0 6 , 2 0 - 1 4 - 2 1 0 3 6 , 2 - 1 3 4 1 1 0 6 5 .

Чтобы обосновать метод окаймляющих миноров, приведем теорему, формулировка которой не требует доказательной базы.

Теорема 1

Если все миноры, окаймляющие минор k-ого порядка матрицы А порядка p на n, равны нулю, то все миноры порядка (k+1) матрицы А равна нулю.

Алгоритм действий :

Чтобы найти ранг матрицы, необязательно перебирать все миноры, достаточно посмотреть на окаймляющие.

Если окаймляющие миноры равняются нулю, то ранг матрицы нулевой. Если существует хотя бы один минор, который не равен нулю, то рассматриваем окаймляющие миноры.

Если все они равны нулю, то Rank(A) равняется двум. При наличии хотя бы одного ненулевого окаймляющего минора, то приступаем к рассматриванию его окаймляющих миноров. И так далее, аналогичным образом.

Пример 4

Найти ранг матрицы методом окаймляющих миноров

А = 2 1 0 - 1 3 4 2 1 0 - 1 2 1 1 1 - 4 0 0 2 4 - 14

Как решить?

Поскольку элемент а 11 матрицы А не равен нулю, то возьмем минор 1-го порядка. Начнем искать окаймляющий минор, отличный от нуля:

2 1 4 2 = 2 × 2 - 1 × 4 = 0 2 0 4 1 = 2 × 1 - 0 × 4 = 2

Мы нашли окаймляющий минор 2-го порядка не равный нулю 2 0 4 1 .

Осуществим перебор окаймляющих миноров - (их (4 - 2) × (5 - 2) =6 штук).

2 1 0 4 2 1 2 1 1 = 0 ; 2 0 - 1 4 1 0 2 1 1 = 0 ; 2 0 3 4 1 - 1 2 1 - 4 = 0 ; 2 1 0 4 2 1 0 0 2 = 0 ; 2 0 - 1 4 1 0 0 2 4 = 0 ; 2 0 3 4 1 - 1 0 2 - 14 = 0

Ответ : Rank(A) = 2.

Нахождение ранга матрицы методом Гаусса (с помощью элементарных преобразований)

Вспомним, что представляют собой элементарные преобразования.

Элементарные преобразования :

  • путем перестановки строк (столбцов) матрицы;
  • путем умножение всех элементов любой строки (столбца) матрицы на произвольное ненулевое число k;

путем прибавления к элементам какой-либо строки (столбца) элементов, которые соответствуют другой стоки (столбца) матрицы, которые умножены на произвольное число k.

Определение 5

Нахождение ранга матрицы методом Гаусса - метод, который основывается на теории эквивалентности матриц: если матрица В получена из матрицы А при помощи конечного числа элементарных преобразований, то Rank(A) = Rank(B).

Справедливость данного утверждения следует из определения матрицы:

  • в случае перестановки строк или столбцов матрицы ее определитель меняет знак. Если он равен нулю, то и при перестановке строк или столбцов остается равным нулю;
  • в случае умножения всех элементов какой-либо строки (столбца) матрицы на произвольное число k, которое не равняется нулю, определитель полученной матрицы равен определителю исходной матрицы, которая умножена на k;

в случае прибавления к элементам некоторой строки или столбца матрицы соответствующих элементов другой строки или столбца, которые умножены на число k, не изменяет ее определителя.

Суть метода элементарных преобразований : привести матрицу,чей ранг необходимо найти, к трапециевидной при помощи элементарных преобразований.

Для чего?

Ранг матриц такого вида достаточно просто найти. Он равен количеству строк, в которых есть хотя бы один ненулевой элемент. А поскольку ранг при проведении элементарных преобразований не изменяется, то это и будет ранг матрицы.

Проиллюстрируем этот процесс:

  • для прямоугольных матриц А порядка p на n, число строк которых больше числа столбцов:

А ~ 1 b 12 b 13 ⋯ b 1 n - 1 b 1 n 0 1 b 23 ⋯ b 2 n - 2 b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b n - 1 n 0 0 0 ⋯ 0 1 0 0 0 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 0 0 , R a n k (A) = n

А ~ 1 b 12 b 13 ⋯ b 1 k b 1 k + 1 ⋯ b 1 n 0 1 b 23 ⋯ b 2 k b 2 k + 1 ⋯ b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b k k + 1 ⋯ b k n 0 0 0 ⋯ 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 0 0 ⋯ 0 , R a n k (A) = k

  • для прямоугольных матриц А порядка p на n, число строк которых меньше числа столбцов:

А ~ 1 b 12 b 13 ⋯ b 1 p b 1 p + 1 ⋯ b 1 n 0 1 b 23 ⋯ b 2 p b 2 p + 1 ⋯ b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b p p + 1 ⋯ b p n , R a n k (A) = p

А ~ 1 b 12 b 13 ⋯ b 1 k b 1 k + 1 ⋯ b 1 n 0 1 b 23 ⋯ b 2 k b 2 k + 1 ⋯ b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b k k + 1 ⋯ b k n 0 0 0 ⋯ 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 0 0 ⋯ 0

  • для квадратных матриц А порядка n на n:

А ~ 1 b 12 b 13 ⋯ b 1 n - 1 b 1 n 0 1 b 23 ⋯ b 2 n - 1 b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b n - 1 n 0 0 0 ⋯ 0 1 , R a n k (A) = n

A ~ 1 b 12 b 13 ⋯ b 1 k b 1 k + 1 ⋯ b 1 n 0 1 b 23 ⋯ b 2 k b 2 k + 1 ⋯ b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b k k + 1 ⋯ b k n 0 0 0 ⋯ 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 0 0 ⋯ 0 , R a n k (A) = k , k < n

Пример 5

Найти ранг матрицы А при помощи элементарных преобразований:

А = 2 1 - 2 6 3 0 0 - 1 1 - 1 2 - 7 5 - 2 4 - 15 7 2 - 4 11

Как решить?

Поскольку элемент а 11 отличен от нуля, то необходимо умножить элементы первой строки матрицы А на 1 а 11 = 1 2:

А = 2 1 - 2 6 3 0 0 - 1 1 - 1 2 - 7 5 - 2 4 - 15 7 2 - 4 11 ~

Прибавляем к элементам 2-ой строки соответствующие элементы 1-ой строки, которые умножены на (-3). К элементам 3-ей строки прибавляем элементы 1-ой строки, которые умножены на (-1):

~ А (1) = 1 1 2 - 1 3 3 0 0 - 1 1 - 1 2 - 7 5 - 2 4 - 15 7 2 - 4 11 ~ А (2) = = 1 1 2 - 1 3 3 + 1 (- 3) 0 + 1 2 (- 3) 0 + (- 1) (- 3) - 1 + 3 (- 3) 1 + 1 (- 3) - 1 + 1 2 (- 3) 2 + (- 1) (- 1) - 7 + 3 (- 1) 5 + 1 (- 5) - 2 + 1 2 (- 5) 4 + (- 1) (- 5) - 15 + 3 (- 5) 7 + 1 (- 7) 2 + 1 2 (- 7) - 4 + (- 1) (- 7) 11 + 3 (- 7) =

1 1 2 - 1 3 0 - 3 2 3 - 10 0 - 3 2 3 - 10 0 - 9 2 9 - 30 0 - 3 2 3 - 10

Элемент а 22 (2) отличен от нуля, поэтому мы умножаем элементы 2-ой строки матрицы А на А (2) н а 1 а 22 (2) = - 2 3:

А (3) = 1 1 2 - 1 3 0 1 - 2 20 3 0 - 3 2 3 - 10 0 - 9 2 9 - 30 0 - 3 2 3 - 10 ~ А (4) = 1 1 2 - 1 3 0 1 - 2 20 3 0 - 3 2 + 1 3 2 3 + (- 2) 3 2 - 10 + 20 3 × 3 2 0 - 9 2 + 1 9 2 9 + (- 2) 9 2 - 30 + 20 3 × 9 2 0 - 3 2 + 1 3 2 3 + (- 2) 3 2 - 10 + 20 3 × 3 2 = = 1 1 2 - 1 3 0 1 - 2 20 3 0 0 0 0 0 0 0 0 0 0 0 0

  • К элементам 3-ей строки полученной матрицы прибавляем соответствующие элементы 2-ой строки,которые умножены на 3 2 ;
  • к элементам 4-ой строки - элементы 2-ой строки, которые умножены на 9 2 ;
  • к элементам 5-ой строки - элементы 2-ой строки, которые умножены на 3 2 .

Все элементы строк равны нулю. Таким образом, при помощи элементарных преобразований,мы привели матрицу к трапецеидальному виду, откуда видно, что R a n k (A (4)) = 2 . Отсюда следует, что ранг исходной матрицы также равен двум.

Замечание

Если проводить элементарные преобразования, то не допускаются приближенные значения!

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Определение. Рангом матрицы называется максимальное число линейно независимых строк, рассматриваемых как векторы.

Теорема 1 о ранге матрицы. Рангом матрицы называется максимальный порядок отличного от нуля минора матрицы.

Понятие минора мы уже разбирали на уроке по определителям , а сейчас обобщим его. Возьмём в матрице сколько-то строк и сколько-то столбцов, причём это "сколько-то" должно быть меньше числа строк и стобцов матрицы, а для строк и столбцов это "сколько-то" должно быть одним и тем же числом. Тогда на пересечении скольки-то строк и скольки-то столбцов окажется матрица меньшего порядка, чем наша исходная матрица. Определитель это матрицы и будет минором k-го порядка, если упомянутое "сколько-то" (число строк и столбцов) обозначим через k.

Определение. Минор (r +1)-го порядка, внутри которого лежит выбранный минор r -го порядка, называется называется окаймляющим для данного минора.

Наиболее часто используются два способа отыскания ранга матрицы . Это способ окаймляющих миноров и способ элементарных преобразований (методом Гаусса).

При способе окаймляющих миноров используется следующая теорема.

Теорема 2 о ранге матрицы. Если из элементов матрицы можно составить минор r -го порядка, не равный нулю, то ранг матрицы равен r .

При способе элементарных преобразований используется следующее свойство:

Если путём элементарных преобразований получена трапециевидная матрица, эквивалентная исходной, то рангом этой матрицы является число строк в ней кроме строк, полностью состоящих из нулей.

Отыскание ранга матрицы способом окаймляющих миноров

Окаймляющим минором называется минор большего порядка по отношению к данному, если этот минорм большего порядка содержит в себе данный минор.

Например, дана матрица

Возьмём минор

окаймляющими будут такие миноры:

Алгоритм нахождения ранга матрицы следующий.

1. Находим не равные нулю миноры второго порядка. Если все миноры второго порядка равны нулю, то ранг матрицы будет равен единице (r =1 ).

2. Если существует хотя бы один минор второго порядка, не равный нулю, то составляем окаймляющие миноры третьего порядка. Если все окаймляющие миноры третьего порядка равны нулю, то ранг матрицы равен двум (r =2 ).

3. Если хотя бы один из окаймляющих миноров третьего порядка не равен нулю, то составляем окаймляющие его миноры. Если все окаймляющие миноры четвёртого порядка равны нулю, то ранг матрицы равен трём (r =2 ).

4. Продолжаем так, пока позволяет размер матрицы.

Пример 1. Найти ранг матрицы

.

Решение. Минор второго порядка .

Окаймляем его. Окаймляющих миноров будет четыре:

,

,

Таким образом, все окаймляющие миноры третьего порядка равны нулю, следовательно, ранг данной матрицы равен двум (r =2 ).

Пример 2. Найти ранг матрицы

Решение. Ранг данной матрицы равен 1, так как все миноры второго порядка этой матрицы равны нулю (в этом, как и в случаях окаймляющих миноров в двух следующих примерах, дорогим студентам предлагается убедиться самостоятельно, возможно, используя правила вычисления определителей), а среди миноров первого порядка, то есть среди элементов матрицы, есть не равные нулю.

Пример 3. Найти ранг матрицы

Решение. Минор второго порядка этой матрицы , в все миноры третьего порядка этой матрицы равны нулю. Следовательно, ранг данной матрицы равен двум.

Пример 4. Найти ранг матрицы

Решение. Ранг данной матрицы равен 3, так как единственный минор третьего порядка этой матрицы равен 3.

Отыскание ранга матрицы способом элементарных преобразований (методом Гаусса)

Уже на примере 1 видно, что задача определения ранга матрицы способом окаймляющих миноров требует вычисления большого числа определителей. Существует, однако, способ, позволяющий свести объём вычислений к минимуму. Этот способ основан на использовании элементарных преобразований матриц и ещё называется также методом Гаусса.

Под элементарными преобразованиями матрицы понимаются следующие операции:

1) умножение какой-либо строки или какого либо столбца матрицы на число, отличное от нуля;

2) прибавление к элементам какой-либо строки или какого-либо столбца матрицы соответствующих элементов другой строки или столбца, умноженных на одно и то же число;

3) перемена местами двух строк или столбцов матрицы;

4) удаление "нулевых" строк, то есть таких, все элементы которых равны нулю;

5) удаление всех пропорциональных строк, кроме одной.

Теорема. При элементарном преобразовании ранг матрицы не меняется. Другими словами, если мы элементарными преобразованиями от матрицы A перешли к матрице B , то .