Среднее арифметическое. Среднее арифметическое в Excel Как найти среднее арифметическое нескольких

Что такое среднее арифметическое

Средним арифметическим нескольких величин является отношение суммы этих величин к их количеству.

Среднее арифметическое определенного ряда чисел называется сумма всех этих чисел, поделенная на количество слагаемых. Таким образом, среднее арифметическое является средним значением числового ряда.

Чему равно среднее арифметическое нескольких чисел? А равно они сумме этих чисел, которая поделена на количество слагаемых в этой сумме.

Как найти среднее арифметическое число

В вычислении или нахождении среднего арифметического нескольких чисел, нет ничего сложного, достаточно сложить все представленные числа, а полученную сумму разделить на количество слагаемых. Полученный результат и будет средним арифметическим этих чисел.


Рассмотрим этот процесс более подробно. Что же нам нужно сделать для вычисления среднего арифметического и получения конечного результата этого числа.

Во-первых, для его вычисления нужно определить набор чисел или их количество. В этот набор могут входить большие и маленькие числа, и их количество может быть каким угодно.

Во-вторых, все эти числа нужно сложить и получить их сумму. Естественно, если числа несложные и их небольшое количество, то вычисления можно произвести, записав от руки. А если же набор чисел впечатляющий, то лучше воспользоваться калькулятором или электронной таблицей.

И, в-четвертых, полученную от сложения сумму необходимо разделить на количество чисел. В итоге мы получим результат, который и будет средним арифметическим числом этого ряда.



Для чего нужно среднее арифметическое

Среднее арифметическое может пригодиться не только для решения примеров и задач на уроках математики, но для других целей, необходимых в повседневной жизни человека. Такими целями может служить подсчет среднего арифметического для расчета среднего расхода финансов в месяц, или для подсчета времени, которое вы тратите на дорогу, также для того чтобы узнать посещаемость, производительность, скорость движения, урожайность и много другого.

Так, например, давайте попробуем рассчитать, сколько времени вы тратите на дорогу в школу. Идя в школу или возвращаясь, домой вы каждый раз тратите на дорогу разное время, так как когда вы спешите, то вы идете быстрее, и поэтому дорога занимает меньше времени. А вот, возвращаясь, домой вы можете идти не спеша, общаясь с одноклассниками, любуясь природой и поэтому времени на дорогу займет больше.

Поэтому, точно определить время, затраченное на дорогу у вас не получиться, но благодаря среднему арифметическому вы сможете приблизительно узнать время, которое вы тратите на дорогу.

Припустим, что в первый день после выходных, вы потратили на путь от дома до школу пятнадцать минут, на второй день ваш путь занял двадцать минут, в среду вы прошли расстояние за двадцать пять минут, за такое же время составил ваш путь и в четверг, а в пятницу вы никуда не торопились и возвращались целых пол часа.

Давайте найдем среднее арифметическое, прибавив время, за все пять дней. Итак,

15 + 20 + 25 + 25 + 30 = 115

Теперь разделим эту сумму на количество дней

Благодаря такому способу вы узнали, что путь от дома до школы вы приблизительно тратите двадцать три минуты своего времени.

Домашнее задание

1.Путем нехитрых вычислений найдите среднее арифметическое число посещаемости учеников вашего класса за неделю.

2. Найдите среднее арифметическое:



3. Решите задачу:



) и выборочное среднее (выборки).

Энциклопедичный YouTube

  • 1 / 5

    Обозначим множество данных X = (x 1 , x 2 , …, x n ), тогда выборочное среднее обычно обозначается горизонтальной чертой над переменной (, произносится «x с чертой»).

    Для обозначения среднего арифметического всей совокупности используется греческая буква μ . Для случайной величины , для которой определено среднее значение, μ есть вероятностное среднее или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним μ, тогда для любой выборки x i из этой совокупности μ = E{x i } есть математическое ожидание этой выборки.

    На практике разница между μ и x ¯ {\displaystyle {\bar {x}}} в том, что μ является типичной переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность. Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда x ¯ {\displaystyle {\bar {x}}} (но не μ) можно трактовать как случайную переменную , имеющую распределение вероятностей на выборке (вероятностное распределение среднего).

    Обе эти величины вычисляются одним и тем же способом:

    x ¯ = 1 n ∑ i = 1 n x i = 1 n (x 1 + ⋯ + x n) . {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}={\frac {1}{n}}(x_{1}+\cdots +x_{n}).}

    Примеры

    • Для трёх чисел необходимо сложить их и разделить на 3:
    x 1 + x 2 + x 3 3 . {\displaystyle {\frac {x_{1}+x_{2}+x_{3}}{3}}.}
    • Для четырёх чисел необходимо сложить их и разделить на 4:
    x 1 + x 2 + x 3 + x 4 4 . {\displaystyle {\frac {x_{1}+x_{2}+x_{3}+x_{4}}{4}}.}

    Или проще 5+5=10, 10:2. Потому что мы складывали 2 числа, а значит, сколько чисел складываем, на столько и делим.

    Непрерывная случайная величина

    f (x) ¯ [ a ; b ] = 1 b − a ∫ a b f (x) d x {\displaystyle {\overline {f(x)}}_{}={\frac {1}{b-a}}\int _{a}^{b}f(x)dx}

    Некоторые проблемы применения среднего

    Отсутствие робастности

    Хотя среднее арифметическое часто используется в качестве средних значений или центральных тенденций, это понятие не относится к робастной статистике, что означает, что среднее арифметическое подвержено сильному влиянию «больших отклонений». Примечательно, что для распределений с большим коэффициентом асимметрии среднее арифметическое может не соответствовать понятию «среднего», а значения среднего из робастной статистики (например, медиана) может лучше описывать центральную тенденцию.

    Классическим примером является подсчёт среднего дохода. Арифметическое среднее может быть неправильно истолковано в качестве медианы , из-за чего может быть сделан вывод, что людей с большим доходом больше, чем на самом деле. «Средний» доход истолковывается таким образом, что доходы большинства людей находятся вблизи этого числа. Этот «средний» (в смысле среднего арифметического) доход является выше, чем доходы большинства людей, так как высокий доход с большим отклонением от среднего делает сильный перекос среднего арифметического (в отличие от этого, средний доход по медиане «сопротивляется» такому перекосу). Однако, этот «средний» доход ничего не говорит о количестве людей вблизи медианного дохода (и не говорит ничего о количестве людей вблизи модального дохода). Тем не менее, если легкомысленно отнестись к понятиям «среднего» и «большинство народа», то можно сделать неверный вывод о том, что большинство людей имеют доходы выше, чем они есть на самом деле. Например, отчёт о «среднем» чистом доходе в Медине, штат Вашингтон , подсчитанный как среднее арифметическое всех ежегодных чистых доходов жителей, даст на удивление большое число из-за Билла Гейтса . Рассмотрим выборку (1, 2, 2, 2, 3, 9). Среднее арифметическое равно 3.17, но пять значений из шести ниже этого среднего.

    Сложный процент

    Если числа перемножать , а не складывать , нужно использовать среднее геометрическое , а не среднее арифметическое. Наиболее часто этот казус случается при расчёте окупаемости инвестиций в финансах.

    Например, если акции в первый год упали на 10 %, а во второй год выросли на 30 %, тогда некорректно вычислять «среднее» увеличение за эти два года как среднее арифметическое (−10 % + 30 %) / 2 = 10 %; правильное среднее значение в этом случае дают совокупные ежегодные темпы роста, по которым годовой рост получается только около 8,16653826392 % ≈ 8,2 %.

    Причина этого в том, что проценты имеют каждый раз новую стартовую точку: 30 % - это 30 % от меньшего, чем цена в начале первого года, числа: если акции в начале стоили $30 и упали на 10 %, они в начале второго года стоят $27. Если акции выросли на 30 %, они в конце второго года стоят $35.1. Арифметическое среднее этого роста 10 %, но поскольку акции выросли за 2 года всего на $5.1, средний рост в 8,2 % даёт конечный результат $35.1:

    [$30 (1 - 0.1) (1 + 0.3) = $30 (1 + 0.082) (1 + 0.082) = $35.1]. Если же использовать таким же образом среднее арифметическое значение 10 %, мы не получим фактическое значение: [$30 (1 + 0.1) (1 + 0.1) = $36.3].

    Сложный процент в конце 2 года: 90 % * 130 % = 117 % , то есть общий прирост 17 %, а среднегодовой сложный процент 117 % ≈ 108.2 % {\displaystyle {\sqrt {117\%}}\approx 108.2\%} , то есть среднегодовой прирост 8,2 %.. Это число неверно по двум причинам.

    Среднее значение для циклической переменной, рассчитанное по приведённой формуле, будет искусственно сдвинуто относительно настоящего среднего к середине числового диапазона. Из-за этого среднее рассчитывается другим способом, а именно, в качестве среднего значения выбирается число с наименьшей дисперсией (центральная точка). Также вместо вычитания используется модульное расстояние (то есть, расстояние по окружности). Например, модульное расстояние между 1° и 359° равно 2°, а не 358° (на окружности между 359° и 360°==0° - один градус, между 0° и 1° - тоже 1°, в сумме - 2°).

    Среднее арифметическое значение - самый известный статистический показатель. В этой заметке рассмотрим его смысл, формулы расчета и свойства.

    Средняя арифметическая как оценка математического ожидания

    Теория вероятностей занимается изучением случайных величин. Для этого строятся различные характеристики, описывающие их поведение. Одной из основных характеристик случайной величины является математическое ожидание, являющееся своего рода центром, вокруг которого группируются остальные значения.

    Формула матожидания имеет следующий вид:

    где M(X) – математическое ожидание

    x i – это случайные величины

    p i – их вероятности.

    То есть, математическое ожидание случайной величины - это взвешенная сумма значений случайной величины, где веса равны соответствующим вероятностям.

    Математическое ожидание суммы выпавших очков при бросании двух игральных костей равно 7. Это легко подсчитать, зная вероятности. А как рассчитать матожидание, если вероятности не известны? Есть только результат наблюдений. В дело вступает статистика, которая позволяет получить приблизительное значение матожидания по фактическим данным наблюдений.

    Математическая статистика предоставляет несколько вариантов оценки математического ожидания. Основное среди них – среднее арифметическое.

    Среднее арифметическое значение рассчитывается по формуле, которая известна любому школьнику.

    где x i – значения переменной,
    n – количество значений.

    Среднее арифметическое – это соотношение суммы значений некоторого показателя с количеством таких значений (наблюдений).

    Свойства средней арифметической (математического ожидания)

    Теперь рассмотрим свойства средней арифметической, которые часто используются при алгебраических манипуляциях. Правильней будет вновь вернутся к термину математического ожидания, т.к. именно его свойства приводят в учебниках.

    Матожидание в русскоязычной литературе обычно обозначают как M(X), в иностранных учебниках можно увидеть E(X). Встречается обозначение греческой буквой μ (читается «мю»). Для удобства предлагаю вариант M(X).

    Итак, свойство 1. Если имеются переменные X, Y, Z, то математическое ожидание их суммы равно сумме их математических ожиданий.

    M(X+Y+Z) = M(X) + M(Y) + M(Z)

    Допустим, среднее время, затрачиваемое на мойку автомобиля M(X) равно 20 минут, а на подкачку колес M(Y) – 5 минут. Тогда общее среднее арифметическое время на мойку и подкачку составит M(X+Y) = M(X) + M(Y) = 20 + 5 = 25 минут.

    Свойство 2. Если переменную (т.е. каждое значение переменной) умножить на постоянную величину (a), то математическое ожидание такой величины равно произведению матожидания переменной и этой константы.

    К примеру, среднее время мойки одной машины M(X) 20 минут. Тогда среднее время мойки двух машин составит M(aX) = aM(X) = 2*20 = 40 минут.

    Свойство 3. Математическое ожидание постоянной величины (а) есть сама эта величина (а).

    Если установленная стоимость мойки легкового автомобиля равна 100 рублей, то средняя стоимость мойки нескольких автомобилей также равна 100 рублей.

    Свойство 4. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий.

    M(XY) = M(X)M(Y)

    Автомойка за день в среднем обслуживает 50 автомобилей (X). Средний чек – 100 рублей (Y). Тогда средняя выручка автомойки в день M(XY) равна произведению среднего количества M(X) на средний тариф M(Y), т.е. 50*100 = 500 рублей.

    Формула среднего значения в Excel

    Среднее арифметическое чисел в Excel рассчитывают с помощью функции СРЗНАЧ . Выглядит примерно так.

    У этой формулы есть замечательное свойство. Если в диапазоне, по которому рассчитывается формула, присутствуют пустые ячейки (не нулевые, а именно пустые), то они исключается из расчета.

    Вызвать функцию можно разными способами. Например, воспользоваться командой автосуммы во вкладке Главная :

    После вызова формулы нужно указать диапазон данных, по которому рассчитывается среднее значение.

    Есть и стандартный способ для всех функций. Нужно нажать на кнопку fx в начале строки формул. Затем либо с помощью поиска, либо просто по списку выбрать функцию СРЗНАЧ (в категории «Статистические»).

    Средняя арифметическая взвешенная

    Рассмотрим следующую простую задачу. Между пунктами А и Б расстояние S, которые автомобиль проехал со скоростью 50 км/ч. В обратную сторону – со скоростью 100 км/ч.

    Какова была средняя скорость движения из А в Б и обратно? Большинство людей ответят 75 км/ч (среднее из 50 и 100) и это неправильный ответ. Средняя скорость – это все пройденное расстояние, деленное на все потраченное время. В нашем случае все расстояние – это S + S = 2*S (туда и обратно), все время складывается из времени из А в Б и из Б в А. Зная скорость и расстояние, время найти элементарно. Исходная формула для нахождения средней скорости имеет вид:

    Теперь преобразуем формулу до удобного вида.

    Подставим значения.

    Правильный ответ: средняя скорость автомобиля составила 66,7 км/ч.

    Средняя скорость – это на самом деле среднее расстояние в единицу времени. Поэтому для расчета средней скорости (среднего расстояния в единицу времени) используется средняя арифметическая взвешенная по следующей формуле.

    где x – анализируемый показатель; f – вес.

    Аналогичным образом по формуле средневзвешенной средней рассчитывается средняя цена (средняя стоимость на единицу продукции), средний процент и т.д. То есть если средняя считается по другим усредненным значениям, нужно применить среднюю взвешенную, а не простую.

    Формула средневзвешенного значение в Excel

    Обычная функция среднего значения в Excel СРЗНАЧ, к сожалению, считает только среднюю простую. Готовой формулы для среднего взвешенного значения в Excel нет. Однако расчет несложно сделать подручными средствами.

    Самый понятный вариант создать дополнительный столбец. Выглядит примерно так.

    Имеется возможность сократить количество расчетов. Есть функция СУММПРОИЗВ. С ее помощью можно рассчитать числитель одним действием. Разделить на сумму весов можно в этой же ячейке. Вся формула для расчета среднего взвешенного значения в Excel выглядит так:

    СУММПРОИЗВ(B3:B5;C3:C5)/СУММ(C3:C5)

    Интерпретация средней взвешенной такая же, как и у средней простой. Средняя простая – это частный случай взвешенной, когда все веса равны 1.

    Представим, что имеется спица, на которой в разных местах нанизаны грузики различной массы.

    Как отыскать центр тяжести? Центр тяжести – это такая точка, за которую можно ухватиться, и спица при этом останется в горизонтальном положении и не будет переворачиваться под действием силы тяжести. Она должна быть в центре всех масс, чтобы силы слева равнялись силам справа. Для нахождения точки равновесия следует рассчитать среднее арифметическое взвешенное расстояний от начала спицы до каждого грузика. Весами будут являться массы грузиков (m i), что в прямом смысле слова соответствует понятию веса. Таким образом, среднее арифметическое расстояние – это центр равновесия системы, когда силы с одной стороны точки уравновешивают силы с другой стороны.

    И последнее. В русском языке так сложилось, что под словом «средний» обычно понимают именно среднее арифметическое. То есть моду и медиану как-то не принято называть средним значением. А вот на английском языке слово «средний» (average) может трактоваться и как среднее арифметическое (mean), и как мода (mode), и как медиана (median). Так что при чтении иностранной литературы следует быть бдительным.

    Больше всего в эк. практике приходится употреблять среднюю арифметическую, которая может быть исчислена как средняя арифметическая простая и взвешенная.

    Средняя арифметическая (СА) аиболее распространенный вид средних. Она применяется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значений признаков отдельных ее единиц. Для общест­венных явлений характерна аддитивность (суммарность) объе­мов варьирующего признака, этим определяется область при­менения СА и объясняется ее распро­страненность как обобщающего показателя, напр: общий фонд з/ п – это сумма з/п всех работников.

    Чтобы исчислить СА, нужно сумму всех значений признаков разделить на их число. СА примен-ся в 2 формах.

    Рассмотрим сначала простую арифметическую среднюю.

    1-СА простая (исходная, определяющая форма) равна простой сумме отдельных значений осредняемого признака, деленной на общее число этих значений (применяется когда имеются несгруппированные инд. значения признака):

    Произведенные вычисления могут быть обобщены в следующую формулу:

    (1)

    где - среднее значение варьирующего признака, т. е. средняя арифметическая простая;

    означает суммирование, т. е. сложение отдельных признаков;

    x - отдельные значения варьирующего признака, которые называются вариантами;

    n - число единиц совокупности

    Пример1, требуется найти среднюю выработку одного рабочего (слесаря), если известно, сколько деталей изготовил каждый из 15 рабочих, т.е. дан ряд инд. значений признака, шт.: 21; 20; 20; 19; 21; 19; 18; 22; 19; 20; 21; 20; 18; 19; 20.

    СА простая рассчитывается по формуле(1),шт.:

    Пример2 . Рассчитаем СА на основании условных данных по 20 магазинам, входящим в торговую фирму (табл. 1). Таблица.1

    Распределение магазинов торговой фирмы "Весна" по торговой площади, кв. М

    № магазина

    № магазина

    Для вычисления средней площади магазина () необходимо сложить площади всех магазинов и полученный результат разделить на число магазинов:

    Т.о., средняя площадь магазина по этой группе торговых предприятий составляет 71 кв.м.

    Следовательно, чтобы определить СА простую, нужно сумму всех значений данного признака разделить на число единиц, обладающих этим признаком .

    2

    где f 1 , f 2 , … ,f n веса (частоты повторения одинаковых признаков);

    – сумма произведений величины признаков на их частоты;

    – общая численность единиц совокупности.

    - СА взвешенная - с редняя из вариантов, которые повторяются различное число раз, или, как говорят, имеют различный вес. В качестве весов выступают численности единиц в разных группах совокупности (в группу объединяют одинаковые варианты). СА взвешенная средняя сгруппиро­ванных величин x 1 , x 2 , .., x n , вычисляется: (2)

    Где х - варианты;

    f - частота (вес).

    СА взвешенная есть частное от деления суммы произведений вариантов и соответствующих им частот на сумму всех частот. Частоты (f ) фигурирующие в формуле СА, принято называть весами , вследствие чего СА, вычисленная с учетом весов, и получила название взвешенной.

    Технику вычисления СА взвешенной проиллюстрируем на рассмотренном выше примере 1. Для этого сгруппируем исходные данные и поместим их в табл.

    Средняя из сгруппированных данных определяется следующим образом: сначала перемножают варианты на частоты, затем складывают произведения и полученную сумму делят на сумму частот.

    По формуле (2) СА взвешенная равна, шт.:

    Распределение рабочих по выработке деталей

    П

    риведенные в предыдущем примере 2 данные можно объединить в однородные группы, которые представлены в табл.Таблица

    Распределение магазинов фирмы "Весна" по торговой площади, кв. м

    Т.о., результат получился тот же самый. Однако это уже будет величина средняя арифметическая взвешенная.

    В предыдущем примере мы вычисляли арифметическую среднюю при условии, что известны абсолютные частоты (численность магазинов). Однако в ряде случаев абсолютные частоты отсутствуют, а известны относительные частоты, или, как принято их называть, частости, которые показывают долю или удельный вес частот во всей совокупности.

    При расчетах СА взвешенной использование частот позволяет упрощать расчеты, когда частота выражена большими, многозначными числами. Расчет производится тем же способом, однако, так как средняя величина оказывается увеличенной в 100 раз, полученный результат следует разделить на 100.

    Тогда формула средней арифметической взвешенной будет иметь вид:

    где d – частость , т.е. доля каждой частоты в общей сумме всех частот.

    (3)

    В нашем примере 2 сначала определяют удельный вес магазинов по группам в общей численности магазинов фирмы "Весна". Так, для первой группы удельный вес соответствует 10%
    . Получаем следующие данныеТаблица3

    Вопрос о том, как найти среднее арифметическое, возникает у людей разного возраста, а не только у учащейся молодежи. Иногда нам нужно срочно найти среднее арифметическое, а мы не можем вспомнить, как это сделать. Тогда мы начинаем судорожно листать школьные учебники по математике, стремясь найти необходимую нам информацию. А ведь это очень просто!

    Для нахождения среднего арифметического нескольких чисел следует сложить их между собой. После этого полученную сумму следует разделить на количество слагаемых.

    Чтобы стало более понятно, давайте вместе разберемся, как найти среднее арифметическое чисел, на примере: 78, 115, 121 и 224. Сначала нам нужно сложить эти числа: 78+115+121+224=538. Теперь полученную сумму, т.е. 538 следует разделить на количество слагаемых: 538:4=134,5. Итак, средним арифметическим этих чисел является 134,5.

    Среднее арифметическое нескольких чисел: найти с помощью Excel

    Найти среднее арифметическое очень просто, используя Excel. Эта программа позволяет избежать длительных вычислений и, соответственно, ошибок. Чтобы найти среднее арифметическое нескольких чисел следует записать их в один столбец. Затем выделите этот столбец и на панели быстрого доступа выберите значок суммы (?) и вкладку «среднее»». Значение среднее арифметического этих чисел появится внизу выделенного столбца.