Все процессоры kaby lake. Семь фактов о Kaby Lake

Некоторое время назад, в предновогодней суете, к нам добрался инженерный образец из седьмого поколения процессоров компании Intel. Сегодня мы познакомимся с ним ближе, проведем тестирование и сравним его с хорошо знакомым вариантом предыдущего поколения в разрезе определенного пользовательского «кейса».

Новая микроархитектура с кодовым названием Intel Kaby Lake представляет собой следующий виток в освоении 14-нм технологического процесса и является доработанной вариацией Skylake при этом она не привносит столь явных изменений, как при переходе с того же поколения Broadwell. Но давайте обо всем по порядку.

Для седьмого поколения процессоров Intel Core производитель ставит совершенно различные задачи, но сейчас большее внимание уделяется именно «погружению в интернет». Для этого предлагается использовать как привычные панели высокой четкости 4K UHD, так и не столь распространённые технологии виртуальной реальности, а также съемки и просмотра 360° видео.

Для решения этих задач инженеры Intel делают упор на развитие встроенной графической подсистемы. Intel Iris Plus Graphics будет доступна, в некоторых моделях процессоров, которые нацелены на использование в системах без дискретной графики.

Седьмое поколение на архитектуре Intel Kaby Lake представляет разносторонний набор процессоров для использования в системах различного типа. Например, процессоры Y-серии, нацелены на системы 2 в 1, обладают тепловым пакетом от 4.5W. Такие показатели должны отлично сказаться на уровне энергоэффективности и тепловых режимах устройств.

Kaby Lake является третьей архитектурой производителя на нормах 14-нм. В основу новинки положена архитектура Skylake. Технология управления частотой процессора Speed Shift была оптимизирована и теперь позволяет регулировать режим работы силами самого процессора без участия операционной системы с еще меньшими задержками. Использование аппаратного ускорение для 10-bit HVEC и VP9 позволяет снизить нагрузку на центральный процессор в момент просмотра 4K, что позволяет увеличить продолжительность работы и оставить ресурсы для других процессов.

Линейка процессоров S-серии остается весьма привычной по набору процессоров, но у моделей приемников наблюдаем увеличения тактовых частот. Для настольных вариантов есть знакомые i7, i5 и i3 с заблокированным и разблокированными множителями. При этом вариация i3-7350 с аббревиатурой «K» появилась именно в этот раз.

Одновременно с обновленной линейкой процессоров представлены чипсеты Intel 200-й серии. Флагманский Intel Z270 в отличие от своего предшественника Z170 может похвастаться увеличением линий PCI-e 3.0 с 20 до 24 штук. Количество SATA и USB осталось неизменным. Поддержка процессоров шестого поколения безусловно присутствует.

Знакомство с Intel Core i7-7700

Процессор Intel Core i7-7700 хоть и прибыл к нам «под покровом ночи», но был упакован в небольшую картонную коробочку с пломбами, серийными номерами и прочей технической информацией. Оформление обычных BOX-вариантов седьмой серии визуально не будет сильно отличаться от своих предшественников.

Комплектный кулер не произвел на меня какого-либо впечатления. Небольшой алюминиевый радиатор с пластиковыми клипсами, заранее нанесенной термопастой и вентилятором с PWM-управлением. Пожалуй, конструкция радиатора будет знакома почти каждому пользователю, которому хоть раз доводилось собирать систему с BOX-процессором от Intel.

На нашем экземпляре красовалась маркировка INTEL CONFIDENTIAL, без сноски к точной модели процессора. Однако, есть отметки о частоте в 3.6GHz и Batch номере процессора L633F729.


Со стороны контактной площадки новенький i7-7700 почти не отличим от нашего стендового i5-6600K, оно и верно, ведь используется один и тот же LGA1151. Что интересно, изменения в элементах обвязки есть, но их нужно поискать.

(Слева — Intel Core i5-6600K, справа - Intel Core i7-7700)

Теплораспределительная крышка тоже немного видоизменилась. По бокам центральной области мы видим небольшие выступы. И да, сразу понятно кто из этой пары бывалый стендовый образец, прошедший скальпирование и тесты пары десятков различных систем охлаждения.

Знакомство с материнской платой ASUS ROG STRIX Z270F

Для тестирования нового Intel Core i7-7700 мы будем использовать материнскую плату ASUS ROG STRIX Z270F. Она базируется на обновленном наборе системной логики Intel Z270. В семействе плат ASUS Z170 мы привыкли к классическому разделению по линейкам: Prime, ROG, Pro Gaming и TUF. Похоже, теперь линейка Pro Gaming вливается в дивизион Republic of Gamers с кодовой маркировкой Strix. Производитель уже не первый год вводит название Strix в линейки своих продуктов, логически дошли до материнских плат. ASUS ROG STRIX Z270F прибыла в картонной упаковке с фотографией материнской платы, хорошо читаемым названием, перечнем характеристик и используемых технологий.

Комплект поставки добротный. В нем нашлись:

  • Руководство пользователя;
  • Диск с драйверами и утилитами;
  • Набор STRIX-наклеек и круглый подстаканник(?);
  • Четыре SATA кабеля;
  • SLI-мост;
  • Заглушка для корпуса;
  • Рамка для установки процессора и болтики для накопителей M.2;
  • Кабеля для подключения светодиодных лент.

ASUS ROG STRIX Z270F выполнена в стандартном форм-факторе ATX, поэтому ее размеры укладываются в знакомые многим 305 x 244 миллиметров. Общая компоновка элементов не претерпела явных изменений, в целом все находится на своих привычных местах. В визуальной составляющей основным цветом остался черный, а вот красный пропал. Радиаторы окрашены в сплошной металлический и даже черный оттенок, а на самой PCB появились белые линии с ломаным узором.

Процессорный разъем LGA1151 остался прежним. Визуально изменений не обнаружилось. Прижимная рамка осталась неокрашенной, ранее окраска была на том же Maximus VIII Ranger. За питание процессора отвечает десятифазная система с формулой фаз 8+2. Все фазы находятся под управлением ШИМ-контроллера с маркировкой DIGI+ EPU ASP1400BT. Для подачи дополнительного питания на процессор используется один 8-Pin разъем.

Для установки оперативной памяти, как и прежде, доступны четыре слота DDR4 DIMM. С их помощью в систему можно установить до 64GB оперативной памяти с максимальной тактовой частотой в 3866 MHZ в OC-режиме.

За охлаждение элементов системы питания процессора отвечает пара раздельных радиаторов из алюминиевого сплава. Они крепятся к плате с помощью болтов, бекплейты не предусмотрены, для контакта используется термопрокладки. В отличии от вариантов предыдущих поколений радиаторы стали чуть тоньше в основании, но обзавелись большей площадью рассеивающих ребер.

Радиатор набора системной логики прикрыт обычным «брусковым» радиатором. Над его внешним видом поработали, черная поверхность обладает небольшой глубиной, при изменении углов освещения получается очень интересно.

Набор слотов расширения уже встречался нам на платах форм-фактора ATX от ASUS.

  • PCI Express 3.0 x1;
  • PCI Express 3.0 x16 (максимум х16 линий);
  • PCI Express 3.0 x1;
  • PCI Express 3.0 x1;
  • PCI Express 3.0 x16 (максимум х8 линий);
  • PCI Express 3.0 x1;
  • PCI Express 3.0 x16 (максимум х4 линий).

Разъем M.2 идет в массы. Теперь на плате их два. Один находится под набором системной логики и поддерживает планки на 42,60,80 и 110 миллиметров, а второй расположился в плоскости первого PCI Express 3.0 x1 и поддерживает планки на 42,60 и 80 миллиметров. Каждый разъем поддерживает работу в режиме PCIe, похоже именно для этого в чипсете увеличили количество линий PCIe. Для подключения накопителей по SATA 6Gb/s предусмотрено шесть разъемов от набора системной логики.

Возвращаясь к визуальным моментам, область разъёмов I/O панели прикрыта небольшим пластиковым кожухом с прозрачным элементом RGB-подсветки. Он отлично освещает область радиаторов и хорошо виден даже с массивными воздушными кулерами. Для настройки режима работы подсветки можно использовать общую для всего контура ASUS Aura Sync. Ранее ASUS уже представляли варианты блоков для печати элементов «брони» на 3D-принтере, сейчас для них сделали группу фиксаторов, осталось найти принтер:).

Перечень слотов панели I/O у подопытной следующий:

  • Один PS/2 для мышки или клавиатуры;
  • Один LAN-разъем RJ-45 (Intel I219-V);
  • Четыре USB 3.0;
  • Два USB 3.1 (Type-C и Type-A);
  • По одному DVI-I, HDMI 1.4 и DisplayPort 1.2;
  • Один оптический S/PDIF;
  • Пять аудио-разъемов miniJack (S1220A HD CODEC).

Набор получился весьма классическим, дополнительных клавиш для сброса или восстановления BIOS не нашлось. При этом есть полноценный набор видеовыходов, возможно еще парочка USB были бы не лишними, да и место для них есть.

Запуск платформы, Тестирование, Резюме

Запускаем

Для тестирования использовался наш постоянный тестовый стенд, но конфигурация была немного изменена:

  • Материнская плата: ASUS ROG STRIX Z270F;
  • Процессоры:
  • Система охлаждения: ;
  • Видеокарта: ;
  • Оперативная память: ;
  • Жёсткий диск: (для системы);
  • Блок питания: .
  • Так как LGA1151 не претерпел изменений, установка Noctua NH-D15S прошла без проблем. Так же и i5-6600K запустился на плате ASUS ROG STRIX Z270F с первого раза и не потребовал каких-либо манипуляций. Его разгонный потенциал остался на прежнем уровне и ограничивался только видом охлаждения и удачностью экземпляра.

    Утилита CPU-Z без проблем признала Intel Core i7-7700. Как и у других представителей i7 технология Hyper Threading реализует обработку восьми потоков. Благодаря технологии Intel Turbo Boost 2.0 (Speed Shift) в многопоточных приложениях процессор работает на частоте в 4000 МГц с напряжением в 1,232 В. При обычной работе иногда проскакивает частота в 4200 МГц, изменение частоты происходит действительно оперативно.

    В штатном режиме запуск Burn-теста утилитой LinX 0.6.5 привел к повышению температуры до 87°C, при этом дельта температуры между ядрами составила 13°C. Вентилятор Noctua NH-D15S работал на оборотах в районе 1000 prm. Ну что, товарищи, для разгона с повышением напряжения нужно подготовиться к процедурам скальпирования. Из-за новогодних празднований было принято провести эксперименты с разгоном по «шине» и заменить термопасту попозже, нужна твердость руки так сказать:).

    Далее приведем результаты тестирования в группе 2D-приложений. Технология Turbo Boost была активна, для учета факторов ее работы. По результатам тестов хотелось найти ответы на несколько весьма простых вопросов: насколько новинка уйдет вперед из-за повышенных частот, насколько разгон процессора i5 шестого поколения поможет в погоне за заблокированным i7.


    Резюмируем

    Архитектура Intel Kaby Lake, как по мне, вносит новый такт в стратегию «tick-tock». Хоть и с аббревиатурой плюса, но технологический процесс в 14-нм использован компаний уже третий раз. Эта ситуация может подводить к нескольким мыслям. Во-первых, освоить следующий шаг становится все тяжелее. Во-вторых, временной промежуток между анонсами новых процессоров пытаются сократить и по максимуму использовать уже имеющиеся наработки. А симбиоз этих мыслей приводит к выводам о положении седьмого поколения процессоров Intel Core.

    Доработки архитектуры позволили изначально работать на более высокой частоте и тем самым в номинальных режимах уйти вперед представителя шестого поколения. При проведении «академического» тестирования на равных частотах и сравнении процессоров в режиме предшественник-последователь, я почти уверен, мы бы не получили большой процент в различии архитектур Skylake и Kaby Lake. Но это было бы искусственное сравнение, в этой партии Intel решили ускорить быстродействие ростом частоты. (Вот кстати и новости о рекордах по частоте подоспели , )

    Однако, частота не является единственным фактором. Мы видим пункты улучшений для решения частных задач: увеличение мощности встроенного графического ядра, добавление аппаратного ускорения определенных кодеков, а также выпуск процессоров под определенные классы устройств. И в разрезе тех же компактных ноутбуков эти факторы создадут немалую прибавку. Именно поэтому в этом материале мы не проводили тестирование встроенного видео ядра, это нужно сделать на ноутбуках без установки дискретного видео.

    Что касается одного из наших вопросов в части Hyper Threading и результатов с отключением этой технологии и разгонным i5. Как видим, в приложениях, которые активно используют каждый поток, даже не разогнанный процессор с HT демонстрирует отрыв. Если большую часть времени вы используете именно такие приложения. То с учетом небольших различий в архитектурах и возможных ценовый казусов нашего рынка, иногда можно смело присмотреться к процессорам i7 из прошлого поколения в перевес новеньких/разблокированных i5.

    Что касается материнской платы , здесь можно сказать следующее:хорошее решение для обновленных процессоров. Производитель создаёт нужную обвязку для платформы с учетом имеющихся наработок и при этом не забывает о добавлении личных фишек в срезе материнской платы. Так же радует, что проводится работа над названием линеек и их упорядочиванием, ведь в конечном итоге это должно помочь при подборе новой системы.

    Kaby Lake является следующим поколением процессоров от Intel. В данный момент мы используем поколение SkyLake. По крайней мере, большинство из нас, если вы не поспешили с покупкой обновленного .

    Вы по-прежнему увидите в продаже ноутбуки с предыдущими поколениями процессоров, как Broadwell и Haswell, но официально они уже в прошлом.

    В этой статье мы собрали все детали, которые вы должны знать о предстоящей революции в мире процессоров с Intel Core Kaby Lake.

    В погоню!

    • Что это? Процессоры Intel Core 7-го поколения;
    • Когда ждать? Ноутбуки выходят сейчас, ПК – 1 квартал 2017;
    • Сколько стоит? Ценообразование схоже с современными Intel Skylake;

    Процессоры Intel Kaby Lake: Дата выхода

    22 июля генеральный директор Intel, Брайан Крзанич, подтвердил, что чипсеты Kaby Lake отправились с полей разработки на конвейерные ленты заводов, а затем и производителям персональных компьютеров. Другими словами, процессоры Kaby Lake официально стоят на пороге.

    Это значит, что мы могли бы ожидать некоторые Kaby Lake (ПК) уже до конца 2016 года. Тем не менее, в данный момент не известно точно, какие чипсеты придут первой волной.

    Intel Kaby Lake включают процессоры настольных компьютеров и ноутбуков Intel Core i3 / i5 / i7 и новые чипсеты Core M.

    Даже после лейтмотива компании Intel на собственной конференции Intel Developer Forum в Сан-Франциско, штат Калифорния, мы не знаем даты выхода 7-го поколения процессоров Intel для настольных компьютеров, но все признаки указывают на выставку CES в январе, по крайней мере, так считают некоторые издания, и мы с ними согласны.

    В то же время, мы не испытывали недостатка в информационных утечках по новым процессорам Kaby Lake и дате выхода. Некоторые технологические издания, как WCCFtech, обнаружили документы, которые указывают на цены и характеристики, в то время как ребята из Tom’s Hardware утверждают, что купили собственный (возможно, розничный) процессор Kaby Lake.

    Процессоры Intel Kaby Lake

    Помимо мобильной серии, 20 процессоров Kaby Lake ждут своих пользователей в продаже. От Pentium G3930 к Core i7-7700K, практически полный выбор, доступный с последним поколением.

    Процессор Kaby Lake Core i7-7700K является флагманским процессором в этот раз, разблокированным для разгона, на что указывает «К» в наименовании. Новая серия Kaby Lake продолжает использовать серийные имена компании: «7» указывает на серию процессоров Kaby Lake, поскольку это седьмое поколение, так и Skylake являются 6-м поколением с номерами «6» в номере.

    Core i7-7700K является 4-ядерным гиперпоточным (hyper-threaded) процессором, и пока первые результаты тестов (за март) обещали нам тактовую частоту между 3,6 ГГц и 4,2 ГГц (Turbo Boost), последние отчеты дразнят поклонников куда более плодотворными 4,2 ГГц / 4,5 ГГц. Конечно, фактические результаты могут отличаться.

    Оригинальные утечки вытекают из эталонной базы данных тестов SiSoft, но, к сожалению, эти данные значительно хуже, чем у текущего поколения i7-6700K. Положительная сторона слухов обещает нам более надежный «наддув» на ядро, в 200 МГц / 500 МГц (Boost), соответственно, в сравнении с предшественником.

    Утечки также намекают на цену в 350$ (22.000 р.), что очень близко к расходам, которые ждали нас с эквивалентным процессором поколения Skylake на момент релиза.

    Далее следует Core i7-7500U, который ушел в сеть бок о бок с i7-7700K. Это CPU, который мы в конечном счете ожидаем видеть на высококлассных ультрабуках. Это чипсет относительно высокой производительности, но он по-прежнему носит «U» в названии, то есть принадлежит семейству ультранизкого напряжения.

    Он имеет два ядра, четыре потока и работает с тактовой частотой 2,7 ГГц – 2,9 ГГц (Turbo). Некоторые из вас могут воротить нос от 2-ядерных чипсетов на ноутбуках, но они играют важную роль.

    На мобильном фронте, Core M5 и M7 прошлого поколения теперь интегрируют «Y» в семействе Core M. К ним относится Core m3-7Y30, Core i5-7Y54 и Core i7-7Y75, которые используются в ведущих ноутбуках с безвентиляторным дизайном и конвертируемыми форматами в дополнение к процессорам U-серии.

    Первые ноутбуки на Intel Kaby Lake

    Где мы увидим эти чипсеты в конечном итоге? Ну, в настоящее время они фигурируют в коротком списке ноутбуков, некоторые из которых уже прошли по нашим обзорам. Новые чипы представлены на Razer Blade Stealth и HP Spectre x360, наряду с , среди множества других ультрабуков, гибридов 2 в1 и традиционных ноутбуков.

    Если вам интересно, почему последний MacBook Pro по-прежнему цепляется за Skylake, ответ прост: на момент релиза ноутбука, необходимой серии процессоров Kaby Lake ещё не было. К счастью, DigiTimes сообщает, что мы увидим высокого класса ноутбуки на этих чипах на выставке CES в январе.

    Некоторые говорят, что компания Apple может пропустить Kaby Lake вовсе, но это кажется маловероятным, поскольку следующее поколение Cannonlake не ожидается раньше второй половины 2017. Согласно графику, 12-дюймовый MacBook должен получить 7-го поколения процессоры Intel уже этой весной.

    Архитектура Intel Kaby Lake

    Cannonlake, вероятно, окажется гораздо более захватывающим, чем обновление Caby Lake. Видите ли, Kaby Lake очень похожи на семейство Skylake. Это не то, чего мы ждали от преемника Skylake, но Intel изменила стратегию развития своих процессоров.

    С 2007 года Intel придерживается режима обновления «tick, tock», где одно поколение приводит к уменьшению процессора, а следующее поколение изменяет архитектуру. Ситуация изменилась в этом году. По состоянию на 2016 год, Intel использует «Процесс, архитектура, оптимизация» в качестве подхода, а KabyLake представляет, откровенно говоря, не самый интересный этап.

    Это по-прежнему процессор 14 нм, который всесторонне похож на Skylake, а модели процессоров для настольных компьютеров будут использовать тот же сокет LGA 1151. Если всё пойдет гладко, Cannonlake обещает сократить размеры процессоров к давно обещанным 10 нм в 2017 году.

    И пока нас ждут, вероятно, некоторые улучшения производительности и повышение общей эффективности, нам кажется, что владельцам процессоров Skylake нет никакой нужды переходить на KabyLake того же уровня.

    Обновление Intel Kaby Lake

    Есть несколько разных улучшений, характерных для Kaby Lake, тем не менее. Первым становится полностью интегрированная поддержка USB-C Gen 2. Skylake предложить поддержку сейчас, но требует дополнительной аппаратной части. Скоро технология станет «родной». Опять же, интересное решение, но не необходимое.

    Gen 2 USB 3.1 обеспечивает пропускную способность в 10 Гбит, вместо 5 Гбит. Поддержка Thunderbolt 3 там же. В том же ключе приходит и поддержка HDCP 2.2. Это цифровая защита от копирования, новая версия предназначена для определенных стандартов видео 4К. Ultra HD Blu-Ray становится ключевым, хотя 4К видео Netflix также требует процессоров Kaby Lake.

    Верно и то, что Kaby Lake также предлагает интегрированные графические процессоры, которые лучше подходят для 4К видео. Благодаря новому медиа-движку на графической архитектуре Gen9, пользователи смогут редактировать 4К видео в реальном времени, используя не больше, чем интегрированную графику. Что касается потребления видео, новый VP9 и HVEC 10-битный расшифровщик позволят смотреть потоковое 4К видео весь день на одной зарядке.

    Процессоры Kaby Lake также официально поддерживают Windows 10 среди операционных систем Microsoft. Это ещё одна попытка Microsoft подтолкнуть тех, кто задержался на Windows 7 и других операционных системах.

    Apollo Lake: Бедный родственник Kaby Lake

    Также стоит учесть и чипсеты Atom, которые занимают нижнюю часть серии, и будут использоваться в очень дешевых ноутбуках и планшетах Windows 10. Несмотря на то, что они не являются частью серии Kaby Lake, последние чипы «Apollo Lake» начали появляться в конце ноября, ASUS и HP в числе первых реализуют новые процессоры.

    Они также способны к ускорению воспроизведения 4К видео, благодаря кодекам HEVC и VP9. Это связано отчасти с переходом графики Gen8 на графику Gen9, как и у процессоров Skylake.

    Kaby Lake- X: Лучшее последним

    Если вы заинтересованы только в основных моделях процессоров Kaby Lake, будущее выглядит не слишком сложным. Они пойдут в серию, прежде чем придет замена в лице Cannonlake в конце 2017 года. Тем не менее, перспективы серьезных чипов высокого класса гораздо более запутаны.

    Сейчас новейшие высокопроизводительные процессоры Intel выступают частью серии Broadwell-E, хотя среди основных процессоров, Broadwell устарел. Проще говоря, реальная аппаратная часть высокого класса придет позже. Мы говорим о процессорах, как Core i7-6900K за 100.000 рублей.

    Альтернатива Kaby Lake не будет зваться Kaby Lake-E, вместо этого мы ждем Kaby Lake-X, который, как ожидается, будет запущен во второй половине 2017 года, наряду с Skylake-X. Правильно: два поколения одновременно.

    Intel Kaby Lake-X будет, по предварительным данным, 4-ядерным процессором, в то время как Skylake-X станет весьма озадачивающим 10-ядерным процессором.

    Что простые смертные покупатели ноутбуков и настольных компьютеров должны знать о Kaby Lake, однако: а) мы увидим ещё больше машин, которые используют новые комплекты чипсетов очень скоро и б) если вы не нуждаетесь в обновлении прямо сейчас, 2017 год принесет Cannonlake с интересными усовершенствованиями.

    Начавшийся несколько дней назад 2017-й - год больших процессорных анонсов. Так, в этом году AMD должна представить процессоры на новой архитектуре Zen, а Intel собирается внедрить новую платформу для энтузиастов LGA2066. Но всё это - позже. В первые же дни наступившего года на первый план выходят другие процессоры - Intel Kaby Lake, представляющие собой ориентированных на массовые системы, где сейчас применяется платформа LGA1151, последователей Skylake.

    И если честно, это - самый неинтересный анонс из всего того набора новинок, который ожидается в ближайшее время. Про Kaby Lake много чего известно уже давно, и вся эта информация не сильно придает оптимизма. Хорошо известно, что новый процессор представляет собой немного подрихтованный Skylake, а значит, никаких особых сюрпризов не несёт. Дело в том, что Kaby Lake, по сути, - вынужденная заплатка на полотне процессорных планов Intel, и сделана она сравнительно по-простому и на скорую руку.

    Подобный малозначительный процессорный анонс уже однажды был в истории Intel — в 2014 году компания сорвала сроки выхода Broadwell и вынужденно обновляла ассортимент продукции за счёт и . Сегодняшняя ситуация во многом похожа: проблемы с внедрением следующего технологического процесса с 10-нм нормами заставляют Intel придумывать дополнительные промежуточные этапы в эстафете обновления процессоров.

    Однако Kaby Lake - всё же не настолько проходная модель. В ней микропроцессорный гигант смог внедрить некоторые улучшения в графическом ядре, но самое главное, при производстве Kaby Lake теперь используется 14-нм техпроцесс второго поколения. Что всё это может дать обычным пользователям и энтузиастам, мы и проанализируем в настоящей статье.

    ⇡ Новый старый техпроцесс, или Что такое «14-нм+»

    Ключевой для Intel принцип разработки новых процессоров, хорошо известный по кодовому названию «тик-так», когда внедрение новых микроархитектур чередовалось с переходом на более совершенные технологические процессы, забуксовал. Изначально каждая стадия в этом конвейере занимала 12-15 месяцев, однако ввод в строй новых производственных технологий с уменьшенными нормами постепенно стал требовать всё больше и больше времени. И в конце концов 14-нм техпроцесс окончательно сломал весь размеренный ритм прогресса. С выпуском процессоров поколения Broadwell возникли настолько критичные задержки, что стало понятно: регулярный и методичный «тик-так» больше не работает.

    Так, мобильные представители семейства Broadwell попали на рынок почти на год позже, чем изначально планировалось. Старшие десктопные процессоры появились с почти полуторагодовой задержкой. А решения среднего уровня на этом дизайне и вовсе до стадии массовых продуктов не дошли совсем. Более того, внедрение микроархитектуры Broadwell в сложные многоядерные процессоры происходило настолько медленно, что, когда в середине прошлого года она наконец-то добралась до старших серверных продуктов, мобильный сегмент ушёл почти на два поколения вперёд - и это тоже явно ненормальная ситуация. Даже для компаний масштаба Intel поддержание в актуальном состоянии сразу нескольких процессорных дизайнов и нескольких производственных технологий представляет достаточно серьёзную задачу.

    Не меньшие проблемы сулит и предстоящий переход на следующую производственную технологию, поэтому первые процессоры, выпущенные по 10-нм техпроцессу, можно ожидать не ранее второй половины 2017 года. Но если вспомнить, что Intel стала применять 14-нм технологию с третьего квартала 2014 года, а процессоры Skylake появились в середине 2015-го, то получается, что между Skylake и их 10-нм последователями образуется слишком продолжительная, двухгодичная пауза, способная отрицательно сказаться как на имидже компании, так и на продажах. Поэтому в конечном итоге Intel, чтобы избавиться от постоянного отставания от первоначальных планов и по возможности унифицировать свою продукцию, приняла решение кардинально поменять цикл разработки и добавить в него дополнительный такт. В результате вместо принципа «тик-так» теперь будет использоваться новый трёхступенчатый принцип «процесс — архитектура — оптимизация», который подразумевает более длительную эксплуатацию техпроцессов и выпуск по одним и тем же нормам не двух, а как минимум трёх процессорных дизайнов.

    Это значит, что, в соответствии с новой концепцией, после Broadwell и Skylake теперь должен следовать не переход на 10-нм нормы, а выпуск ещё одного процессорного дизайна с использованием старых, 14-нм норм. Именно этот добавочный дизайн, разработанный в рамках дополнительной «оптимизации», и получил кодовое имя Kaby Lake. С его первыми носителями, ориентированными на использование в ультрамобильных устройствах, мы уже знакомы - они вышли в конце лета прошлого года. Теперь же компания расширяет ареал обитания Kaby Lake и на другие рынки, в том числе и на традиционные персональные компьютеры.

    Ввиду того, что Kaby Lake - это своего рода экспромт, который был вынужденно спроектирован микропроцессорным гигантом на фоне проблем с переходом на 10-нм техпроцесс, оптимизации, заложенные в этот процессор, касаются не микроархитектуры, а в первую очередь технологии производства. Производитель даже говорит о том, что Kaby Lake выпускается с применением второго поколения 14-нм техпроцесса - 14-нм+ или 14FF+. Если коротко, то это означает, что в полупроводниковую структуру процессорных кристаллов внесены достаточно существенные изменения, но разрешение литографического процесса всё-таки осталось тем же. Конкретнее, фирменные трёхмерные транзисторы Intel (3D Tri-gate) в Kaby Lake получили , с одной стороны, более высокие кремниевые рёбра каналов, а с другой - увеличенные промежутки между затворами транзисторов, что фактически означает меньшую плотность расположения полупроводниковых устройств на кристалле.

    К сожалению, Intel отказывается сообщать какую-либо конкретную информацию о том, насколько с выходом Kaby Lake изменился её 14-нм техпроцесс. И скорее всего, это связано с тем, что эти изменения можно посчитать некоторым шагом назад. Когда компания вводила в строй свою производственную технологию с 14-нм нормами и анонсировала процессоры поколения Broadwell, она охотно делилась деталями и утверждала, что её FinFET-техпроцесс превосходит аналогичные технологии, применяемые другими производителями полупроводников: TSMC, Samsung и GlobalFoundries. Теперь же, когда в рамках процесса 14-нм+ размеры и профиль транзисторов вновь изменились, их характеристики, по-видимому, выглядят уже не так выигрышно, как раньше.

    Впрочем, абсолютные размерности транзисторов интересны лишь для теоретических рассуждений о том, кто из производителей полупроводников владеет самой передовой технологией. Нам же достаточно и качественного описания изменений. Увеличение высоты рёбер трёхмерных транзисторов, являющихся их каналом, открывает возможность для уменьшения сигнальных напряжений и, соответственно, минимизирует токи утечки. Расширение же промежутков между затворами, напротив, требует повышения напряжений, но зато снижает плотность полупроводникового кристалла и упрощает производственный процесс.

    Эти два изменения, проведённые одновременно, отчасти компенсируют друг друга — и поэтому кристаллы Kaby Lake работают при тех же напряжениях, что и Skylake. Но зато Intel выигрывает на другом фронте: усовершенствованный техпроцесс даёт лучший выход годных кристаллов. Причём произошедшее разрежение в расположении транзисторов позволяет снизить их взаимное тепловое и электромагнитное влияние, а это влечёт за собой рост частотного потенциала. В результате Intel удалось обойтись без ухудшения характеристик энергоэффективности нового дизайна, но при этом получить более высокочастотную или даже оверклокерскую реинкарнацию Skylake.

    Конечно, при этом возникают определённые вопросы, которые касаются себестоимости полупроводниковых кристаллов, выращенных по техпроцессу 14-нм+. Intel говорит, что усреднённая плотность транзисторов в Kaby Lake по сравнению с Skylake не изменилась, однако, скорее всего, это произошло благодаря редизайну и более рациональному задействованию неиспользовавшихся ранее областей кристалла. Тем не менее Intel, по-видимому, всё же потребовалось поменять часть оборудования на фабриках, где запущен выпуск Kaby Lake. На это, в частности, косвенно указывает растянутость анонса Kaby Lake по времени. Очевидно, запустить в массовое производство и ультрамобильные двухъядерные, и мощные четырёхъядерные кристаллы компания не смогла именно из-за необходимости перенастройки или переукомплектации производственных линий.

    Но главное — то, что новый техпроцесс, который можно назвать третьим интеловским 3D tri-gate-процессом, действительно позволил компании наладить выпуск чипов с более высокой тактовой частотой. Например, базовая частота старшего десктопного Kaby Lake достигла величины 4,2 ГГц, в то время как флагманский Skylake имел на 200 МГц более низкую частоту. Конечно, в отсутствие улучшений в микроархитектуре всё это вызывает некие ассоциации с Devil’s Canyon, но Kaby Lake - это не просто разогнанный Skylake. Он получился благодаря глубокому тюнингу, который затронул полупроводниковую основу процессора.

    ⇡ Изменения в микроархитектуре, которых нет

    Несмотря на существенные трансформации в производственной технологии, никаких улучшений на микроархитектурном уровне в Kaby Lake сделано не было, и этот процессор имеет ровно такую же характеристику IPC (число исполняемых за такт инструкций), как и его предшественник, Skylake. Иными словами, всё преимущество новинки состоит в способности работать на увеличенных тактовых частотах и в отдельных изменениях во встроенном медиадвижке, касающихся поддержки аппаратного кодирования и декодирования видео в формате 4K.

    Впрочем, для мобильных процессоров даже кажущиеся незначительными нововведения могут давать заметный эффект. В конце концов, улучшение техпроцесса выливается в повышение энергоэффективности, а значит, новое поколение ультрамобильных устройств сможет предложить более продолжительное время работы от батареи. В процессорах же для настольных компьютеров мы можем получить дополнительный прирост на 200-400 МГц в тактовых частотах, достигнутый в рамках установленных ранее тепловых пакетов, но не более того.

    При этом на одинаковых тактовых частотах Skylake и Kaby Lake будут выдавать совершенно идентичную производительность. Микроархитектура в обоих случаях одна и та же, поэтому даже привычному приросту производительности в пределах 3-5 процентов взяться попросту неоткуда. Подтвердить это несложно и практическими данными.

    Обычно для иллюстрации преимуществ новых микроархитектур мы пользуемся простыми синтетическими тестами, которые чутко реагируют на изменения в тех или иных процессорных блоках. На этот раз мы воспользовались бенчмарками, входящими в комплект тестовой утилиты AIDA64 5.80. На следующих графиках приводятся показатели производительности старших четырёхъядерных процессоров поколений Haswell, Broadwell, Skylake и Kaby Lake, работающих на одной и той же постоянной частоте 4,0 ГГц.

    Все три группы тестов: целочисленные, FPU и рендеринг методом трассировки лучей — сходятся в том, что на одинаковой частоте Skylake и Kaby Lake выдают совершенно идентичную производительность. Это подтверждает отсутствие каких бы то ни было микроархитектурных отличий. Следовательно, к Kaby Lake правомерно относиться как к Skylake Refresh: новые процессоры привносят прирост быстродействия только за счёт выросших частот.

    Но и тактовые частоты Kaby Lake особого впечатления не производят. Например, когда Intel выпускала Devil’s Canyon, рост номинальной частоты достигал 13 процентов. Сегодня же прирост частоты старшей модели Kaby Lake по сравнению со старшим Skylake составляет всего порядка 7 процентов.

    А если учесть, что в 14-нм процессорах Broadwell и Skylake предельные частоты откатывались назад по сравнению с 22-нм предшественниками, получается, что старший Kaby Lake всего лишь на 100 МГц превосходит по частоте Devil’s Canyon.

    ⇡ Линейка Kaby Lake для настольных компьютеров

    Первые процессоры поколения Kaby Lake компания Intel представила ещё летом. Однако тогда это были лишь представители энергоэффективных серий Y и U, ориентированные на планшетные и ультрамобильные компьютеры. Все они имели только два ядра и графическое ядро класса GT2, то есть представляли собой сравнительно простые чипы. Основная же масса Kaby Lake, в том числе и четырёхъядерники, выходят только сейчас. Причём речь идёт об обновлении ассортимента сразу всех классов процессоров, включая 4,5-ваттные Core Y-серии; 15- и 28-ваттные Core U-серии с графикой HD Graphics и Iris Plus; 45-ваттные мобильные Core, в том числе и их версии со свободным множителем; 45-ваттные мобильные Xeon; а также набор процессоров S-серии для настольных компьютеров с тепловыми пакетами 35, 65 и 95 Вт.

    Сегодняшний анонс затрагивает в общей сложности 36 различных моделей процессоров, из которых только 16 относятся к десктопным. Но именно о них мы будем говорить сегодня в подробностях.

    Ранее при обновлении модельного ряда процессоров для настольных ПК компания Intel предпочитала разносить по времени выход четырёхъядерных и двухъядерных чипов. Но в этот раз план несколько иной. Компания всё равно не стала вываливать на рынок сразу весь ассортимент обновлённых LGA1151-процессоров, но первая партия десктопных Kaby Lake оказалась более массовой, чем обычно: она включает в себя не только четырёхъядерные Core i7 и Core i5, но и двухъядерные Core i3. То есть во время второго этапа обновления, который ориентировочно произойдёт весной, будут представлены лишь процессоры бюджетных семейств Pentium и Celeron.

    Семейство десктопных процессоров Core i7 седьмого поколения (к которому относится дизайн Kaby Lake) включает в себя три модели:

    Core i7-7700K Core i7-7700 Core i7-7700T
    Ядра/потоки 4/8 4/8 4/8
    Технология Hyper-Threading Есть Есть Есть
    Базовая частота, ГГц 4,2 3,6 2,9
    4,5 4,2 3,8
    Разблокированный множитель Есть Нет Нет
    TDP, Вт 91 65 35
    HD Graphics 630 630 630
    1150 1150 1150
    L3-кеш, Мбайт 8 8 8
    Поддержка DDR4, МГц 2400 2400 2400
    Поддержка DDR3L, МГц 1600 1600 1600
    Технологии vPro/VT-d/TXT Только VT-d Есть Есть
    Расширения набора инструкций AVX 2.0 AVX 2.0 AVX 2.0
    Упаковка LGA1151 LGA1151 LGA1151
    Цена $339 $303 $303

    В семейство Core i7 по-прежнему входят четырёхъядерные процессоры с поддержкой технологии Hyper-Threading, имеющие кеш-память третьего уровня объёмом 8 Мбайт. Но по сравнению с Skylake частоты новых Core i7 выросли на 200-300 МГц, а кроме того, у процессоров появилась официальная поддержка DDR4-2400. В остальном же новинки похожи на предшественников. На привычном уровне остались и рекомендованные цены: Kaby Lake заменят представителей семейства Skylake в старых ценовых категориях.

    Примерно такая же картина складывается и с процессорами Kaby Lake, относящимися к классу Core i5. Разве что здесь ассортимент существенно шире.

    Core i5-7600K Core i5-7600 Core i5-7500 Core i5-7400 Core i5-7600T Core i5-7500T Core i5-7400T
    Ядра/потоки 4/4 4/4 4/4 4/4 4/4 4/4 4/4
    Технология Hyper-Threading Нет Нет Нет Нет Нет Нет Нет
    Базовая частота, ГГц 3,8 3,5 3,4 3,0 2,8 2,7 2,4
    Максимальная частота в турборежиме, ГГц 4,2 4,1 3,8 3,5 3,7 3,3 3,0
    Разблокированный множитель Есть Нет Нет Нет Нет Нет Нет
    TDP, Вт 91 65 65 65 35 35 35
    HD Graphics 630 630 630 630 630 630 630
    Частота графического ядра, МГц 1150 1150 1100 1000 1100 1100 1000
    L3-кеш, Мбайт 6 6 6 6 6 6 6
    Поддержка DDR4, МГц 2400 2400 2400 2400 2400 2400 2400
    Поддержка DDR3L, МГц 1600 1600 1600 1600 1600 1600 1600
    Технологии vPro/VT-d/TXT Только VT-d Есть Есть Только VT-d Есть Есть Только VT-d
    Расширения набора инструкций AVX 2.0 AVX 2.0 AVX 2.0 AVX 2.0 AVX 2.0 AVX 2.0 AVX 2.0
    Упаковка LGA1151 LGA1151 LGA1151 LGA1151 LGA1151 LGA1151 LGA1151
    Цена $242 $213 $192 $182 $213 $192 $182

    Линейка четырёхъядерных процессоров Core i5 лишена технологии Hyper-Treading, обладает L3-кешем размером 6 Мбайт и по сравнению с Core i7 предлагает немного более низкие тактовые частоты. Но, как и в случае с Core i7, процессоры серии Core i5 поколения Kaby Lake быстрее своих предшественников на 200-300 МГц. В остальном же они унаследовали характеристики от Skylake без каких-либо существенных изменений.

    Зато в серии Core i3 произошли важные перемены. При внедрении дизайна Kaby Lake в состав этого семейства в него был добавлен оверклокерский процессор с разблокированным коэффициентом умножения, который по сложившейся традиции получил литеру K в модельном номере.

    Серия Core i3 объединяет двухъядерные процессоры с поддержкой технологии Hyper-Threading, оснащённые кеш-памятью третьего уровня объёмом 3 или 4 Мбайт. Характеристики новинок поколения Kaby Lake вновь повторяют спецификации соответствующих Skylake с разницей лишь в тактовых частотах, которые стали выше на 200 МГц.

    Core i3-7350K Core i3-7320 Core i3-7300 Core i3-7100 Core i3-7300T Core i3-7100T
    Ядра/потоки 2/4 2/4 2/4 2/4 2/4 2/4
    Технология Hyper-Threading Есть Есть Есть Есть Есть Есть
    Базовая частота, ГГц 4,2 4,1 4,0 3,9 3,5 3,4
    Максимальная частота в турборежиме, ГГц - - - - - -
    Разблокированный множитель Есть Нет Нет Нет Нет Нет
    TDP, Вт 60 51 51 51 35 35
    HD Graphics 630 630 630 630 630 630
    Частота графического ядра, МГц 1150 1150 1150 1100 1100 1100
    L3-кеш, Мбайт 4 4 4 3 4 3
    Поддержка DDR4, МГц 2400 2400 2400 2400 2400 2400
    Поддержка DDR3L, МГц 1600 1600 1600 1600 1600 1600
    Технологии vPro/VT-d/TXT Только VT-d Только VT-d Только VT-d Только VT-d Только VT-d Только VT-d
    Расширения набора инструкций AVX 2.0 AVX 2.0 AVX 2.0 AVX 2.0 AVX 2.0 AVX 2.0
    Упаковка LGA1151 LGA1151 LGA1151 LGA1151 LGA1151 LGA1151
    Цена $168 $149 $138 $117 $138 $117

    Однако, помимо обновлённых версий привычных двухъядерников, в серии Core i3 теперь появилась принципиально новая модель - процессор Core i3-7350K, характерный имеющимися в нём оверклокерскими возможностями. Ранее среди двухъядерных процессоров у Intel подобных предложений никогда не было (эксперимент в виде - не в счёт), теперь же компания, похоже, решила официально понизить входной барьер в мир разгона. И Core i3-7350K представляется действительно очень интересным вариантом для стеснённых в средствах энтузиастов, ведь его цена на целых 30 процентов ниже стоимости оверклокерского Core i5. Причём весьма вероятно, что за счёт уменьшенного по площади ядра с невысоким тепловыделением этот процессор сможет порадовать и высоким разгонным потенциалом, который мы постараемся проверить на практике при первой же возможности.

    Несколько слов следует сказать и о графическом ядре новинок. Все настольные процессоры поколения Kaby Lake получили одну и ту же встроенную графику уровня GT2, которая включает в себя 24 исполнительных устройства - ровно столько, сколько было в ядре GT2 у процессоров Skylake. А поскольку базовая архитектура GPU в новом процессорном дизайне не изменилась, 3D-производительность Kaby Lake осталась на старом уровне. Появление же в названии HD Graphics более высокого числового индекса 630 всецело связано с новыми возможностями аппаратного медиадвижка, в который были добавлены средства для быстрого кодирования/декодирования видео в форматах VP9 и H.265, а также полная поддержка материалов в 4K-разрешении.

    ⇡ Новые возможности Intel QuickSync

    С точки зрения традиционных процессорных возможностей Kаby Lake не выглядит как серьёзный шаг вперёд по сравнению с Skylake. Такое ощущение создаётся из-за того, что в новом процессоре нет никаких микроархитектурных улучшений. Тем не менее Intel назвала новый процессор собственным кодовым именем — Kaby Lake, чем пытается донести мысль, что перед нами не просто Skylake с увеличенными рабочими частотами. И отчасти это действительно так. Некоторые принципиальные улучшения, которые могут быть заметны конечным пользователям, есть в графическом ядре новых CPU. Несмотря на то, что архитектура GPU процессоров Kaby Lake относится к девятому поколению (как и у Skylake), его мультимедийные возможности существенно расширились. Иными словами, базовый дизайн графического ядра (включая и число исполнительных устройств) в Kaby Lake остался старым, но блоки, отвечающие за кодирование и декодирование видеоконтента, претерпели значительные усовершенствования как в части функциональности, так и по производительности.

    Самое главное: теперь медиадвижок Kaby Lake может полностью аппаратно ускорять кодирование и декодирование 4K-видео в формате HEVC с профилем Main10. В Skylake же, напомним, декодирование HEVC Main10 тоже было заявлено, но там оно было реализовано по гибридной схеме, и нагрузка распределялась между медиадвижком, шейдерами встроенного GPU и вычислительными ресурсами самого процессора. Из-за этого качественное воспроизведение достигалось лишь в случае 4Kp30-видео, более же сложные форматы качественно и без выпадения кадров проигрывать не получалось даже на старших моделях CPU. С Kaby Lake подобных проблем возникать не должно: новые процессоры декодируют HEVC-видео, опираясь на один только медиадвижок, и это позволяет им переваривать сложные профили и высокие разрешения без нагрузки на вычислительные ядра: с высокой эффективностью, без выпадения кадров и с низким потреблением энергии. Intel обещает, что у специализированных блоков медиадвижка Kaby Lake может хватить сил не только на воспроизведение 4K-видео с 60 и даже 120 кадрами в секунду, но и на одновременное декодирование до восьми стандартных AVC- или HVEC-потоков 4Kp30.

    Кроме того, медиадвижок Kaby Lake получил аппаратную поддержку кодека VP9, разработанного Google. Аппаратное декодирование видео возможно с 8- и 10-битной цветовой глубиной, а кодирование - с 8-битной. В Skylake же работа с VP9-видео, так же, как и в случае с HEVC, осуществлялась по гибридной аппаратно-программной схеме. В результате Kaby Lake может оказаться весьма полезен для любителей посмотреть 4K-видео на YouTube, поскольку кодек VP9 активно внедряется именно в этом сервисе.

    В общей сложности ситуация с аппаратной поддержкой в Kaby Lake различных форматов видео выглядит следующим образом:

    Kaby Lake Skylake
    Аппаратное воспроизведение
    H.264 Да Да
    HEVC Main Да Да
    HEVC Main10 Да Гибридное
    VP9 8-бит Да Гибридное
    VP9 10-бит Да Нет
    Аппаратное кодирование
    H.264 Да Да
    HEVC Main Да Да
    HEVC Main10 Да Нет
    VP9 8-бит Да Нет
    VP9 10-бит Нет Нет

    Блок-схема графической части Kaby Lake приведена на иллюстрации ниже. Структурных отличий от Skylake в ней почти нет, однако они присутствуют на более низком уровне. Так, в блок MFX (Multi-Format Codec) внедрена аппаратная поддержка HEVC Main10 и VP9. В результате именно этот блок получил возможность самостоятельного декодирования видео в форматах VP9 и HEVC с 10-битной глубиной цвета, а также кодирования HEVC с 10-битной цветностью и VP9 с 8-битной цветностью.

    Помимо MFX, обновился и блок VQE (Video Quality Engine), отвечающий за работу аппаратного кодера. Нововведения направлены на улучшение качества и производительности при работе с AVC-видео. Так, Intel хочет постепенно внедрить возможность работы с HDR-контентом и планомерно расширяет поддерживаемую цветность на разных этапах конвейера. Однако нужно иметь в виду, что на данный момент все функции кодирования ориентированы только на цветовую субдискретизацию 4:2:0. Это не является проблемой при любительской работе с видео, но для профессиональных применений требуется более точное кодирование 4:2:2 или 4:4:4, которого в рамках Intel QuickSync пока нет.

    Надо сказать, что обычно пользователи десктопных процессоров Intel уделяют не слишком много внимания возможностям медиадвижков. Ведь они являются частью графического ядра, которое в обычных производительных системах отключается в пользу дискретной видеокарты. Однако на самом деле в современных интеловских платформах медиадвижком можно пользоваться и при наличии дискретной видеокарты. Для этого необходимо лишь не отключать встроенную графику, а активировать её через BIOS материнской платы в качестве вторичного видеоадаптера. В этом случае в операционной системе будет обнаружено сразу два графических адаптера, и, после установки драйвера Intel HD Graphics, процессорный медиадвижок Intel QuickSync станет доступным для использования.

    Приведём несколько простых примеров практической пользы такой конфигурации.

    Вот, например, как обстоит дело с воспроизведением на Core i7-7700K сложного медиаконтента - 4Kp60 HEVC Main10-ролика с битрейтом около 52 Мбит/c. Декодирование выполняется с помощью Intel Quick Sync.

    Выпадения кадров нет, загрузка процессора - на минимальных значениях. Это же видео встроенная графика Core i7-6700K и уж тем более процессоров с более ранними дизайнами не могла проигрывать без выпадения кадров. Поэтому для воспроизведения подобных роликов раньше приходилось опираться на программное декодирование, работающее только на высокопроизводительных платформах, да и то не всегда.

    Другой пример - перекодирование видео. В рамках знакомства с Kaby Lake мы посмотрели на производительность перекодирования исходного 1080p-ролика различными программными и аппаратными кодерами. Для целей тестирования использовалась популярная утилита HandBrake 1.0.1, которая позволяет выполнять перекодирование как через Intel QuickSync, так и программно - с использованием кодеров x264 и x265.

    В тестах применялся стандартный профиль качества Fast 1080p30.

    Преимущества в производительности, которые можно получить при перекодировании с использованием аппаратных возможностей медиадвижка, - более чем существенные. Несмотря на то, что в обоих случаях был получен примерно одинаковый по качеству результат с битрейтом около 3,7 Мбит/с, движок Intel QuickSync может предложить в разы более высокую скорость перекодирования, которое к тому же происходит с минимальной нагрузкой на вычислительные процессорные ядра. Правда, скорость аппаратного перекодирования в Kaby Lake по сравнению с Skylake почти не выросла.

    Ещё один пример - стриминг. Поскольку Intel QuickSync позволяет кодировать видео без нагрузки на вычислительные ядра процессора, стримеры для своих трансляций вполне могут обойтись одной системой с процессором Kaby Lake. Например, популярная программа для онлайн-трансляций OBS Studio поддерживает H.264-кодирование посредством интеловского медиадвижка и способна в этом случае работать параллельно с исполняемыми на дискретной видеокарте игровыми приложениями, не снижая их производительности.

    Иными словами, даже в производительной системе, оснащённой внешней графической картой, применений для Intel QuickSync можно найти массу. И его возросшая в Kaby Lake функциональность приходится как нельзя кстати. Аппаратные мультимедийные возможности этого блока, который стал практически всеядным, действительно расширяют сферу применения типичного персонального компьютера.

    Говоря о встроенном в Kaby Lake графическом ядре, нельзя не упомянуть, что оно, как и в Skylake, может поддерживать до трёх 4K-мониторов одновременно. Однако, несмотря на ожидания, врождённая поддержка интерфейса HDMI 2.0 в десктопных процессорах нового поколения так и не появилась. Это значит, что мониторы, подключенные через HDMI-порт, на большинстве материнских плат смогут обеспечить лишь максимальное разрешение 4096 × 2160 @ 24 Гц. Полноценное же 4K-разрешение, как и раньше, будет доступно лишь при использовании DisplayPort 1.2-подключения. Впрочем, существует и альтернативное решение, позволяющее производителям систем оборудовать HDMI 2.0-выходы, оно заключается в использовании добавочных конвертеров LSPCon (Level Shifter — Protocol Converter), устанавливаемых в DP-тракте. Однако такой подход, естественно, требует дополнительных затрат.

    Тем не менее Intel обещает, что системы на базе процессоров Kaby Lake без особых проблем в части совместимости смогут воспроизводить премиальный 4K-контент, защищенный DRM (например, из премиум-аккаунта сервиса Netflix). При отсутствии порта HDMI 2.0 для этого подойдёт и система с DisplayPort, подключенная к 4K-телевизору или монитору с поддержкой HDCP2.2.

    В итоге в медиадвижке Kaby Lake дан ответ на основную претензию к Skylake — по поводу отсутствия аппаратного ускорения 4Kp60 HEVC Main10. Плюс добавлены некоторые другие полезные возможности и усовершенствования, в результате чего встроенная графика Kaby Lake действительно лучше приспособлена для работы с набирающим популярность 4K-видео и с сервисами потоковой трансляции контента. Однако нужно иметь в виду, что одних только аппаратных усовершенствований для внедрения новых функций недостаточно, и впереди - большая работа по обновлению и адаптации программного обеспечения.

    ⇡ Чипсеты для Kaby Lake: Intel Z270 и другие

    По традиции вместе с новыми процессорами Intel выводит на рынок и новые наборы системной логики. То есть, несмотря на то, что принцип «тик-так» сменился принципом «процесс — архитектура — оптимизация», с чипсетами всё осталось по-старому: они обновляются на каждом витке прогресса. Однако на этот раз незначительность усовершенствований в Kaby Lake по сравнению с Skylake позволила сохранить полную совместимость со старой платформой. Kaby Lake не только устанавливаются в уже знакомый нам процессорный разъём LGA1151, но и прекрасно работают в материнских платах со старыми наборами логики сотой серии.

    Оптимизации, произошедшие в технологии производства новых процессоров, не потребовали изменений схемы питания. Она, как и в случае Skylake, у Kaby Lake должна находиться на плате, а не в процессоре. При этом требования к напряжениям и токам остались теми же, что и были раньше. А это значит, что никаких схемотехнических препятствий к установке Kaby Lake в старые LGA1151-платы нет. Единственное, что требуется для поддержки новых CPU старыми платами, - наличие в BIOS материнской платы соответствующего микрокода. И большинство плат на Z170 и других чипсетах прошлого поколения необходимое обновление своевременно получили.

    Новые же наборы логики с модельными номерами из двухсотой серии спроектированы Intel скорее по привычке и просто для того, чтобы у производителей материнских плат появились какие-то основания для обновления платформ. Поэтому нет ничего удивительного в том, что по возможностям отличия от прошлых чипсетов получились минимальными и, можно сказать, даже косметическими. Никаких действительно полезных дополнений в виде поддержки интерфейсов USB 3.1 или Thunderbolt в Intel Z270 и прочих чипах серии не появилось, а главное улучшение, на которое напирает Intel, заключается в поддержке перспективных накопителей Intel Optane.

    Вот как соотносятся между собой чисто технические характеристики старших чипсетов в сотой и двухсотой сериях:

    Intel Z270 Intel Z170
    Поддержка процессоров LGA1151, Intel Core 6 и 7 поколений (Kaby Lake и Skylake)
    Конфигурация CPU PCI Express 1 × 16x или 2 × 8x или 1 × 8x + 2 × 4x
    Независимые дисплейные выходы 3
    Слотов DIMM 4 DDR4 DIMM или 4 DDR3L DIMM
    Поддержка разгона CPU Есть
    Intel Optane Technology Есть Нет
    Intel Rapid Storage Technology 15 14
    Поддержка PCIe SSD в RST Есть
    Макс. число PCIe SSD (M.2) в RST 3
    RAID 0, 1, 5, 10 Есть
    Intel Smart Response Technology Есть
    Технология I/O Port Flexibility Есть
    Общее число высокоскоростных портов 30 26
    USB-порты (USB 3.0), макс. 14 (10) 14 (8)
    SATA 6 Гбит/с порты, макс. 6
    Линии PCI Express 3.0, макс. 24 20

    Причём в том, что касается главного маркетингового аргумента в пользу чипсетов двухсотой серии - поддержки Optane, Intel во многом лукавит. На самом деле накопители Optane не потребуют никаких специальных интерфейсов или разъёмов. Для работы им будет нужен обычный слот M.2 с заведённой в него шиной PCI Express 3.0 x4, и такие слоты есть на многих старых LGA1151-платах. В случае же новых наборов логики речь просто идёт о том, что в них число линий PCI Express несколько увеличено, и это позволяет производителям плат без проблем добавить на свои платформы более одного слота M.2. Дело в том, что, как предполагается, первые версии Intel Optane обычные SSD собой не заменят. Они получат крайне небольшие объёмы и будут позиционироваться в роли дополнительных кеширующих накопителей, поэтому под них предполагается отводить отдельный независимый слот, который в чипсетах двухсотой серии реализовать легче. Кроме того, для новых чипсетов будет сделан специальный Rapid Storage Technology-драйвер, в котором будут заложены некие оптимизированные для Optane алгоритмы работы, похожие по сути на новую версию технологии Intel Smart Response.

    Таким образом, значимым отличием Z270 от Z170 следует считать не надуманную поддержку Optane, а увеличенное на четыре штуки (до 24) максимальное число поддерживаемых чипсетом линий PCI Express 3.0. Причём это изменение нашло отражение и в изменении схемы I/O Port Flexibility, в рамках которой теперь допускается одновременная реализация сразу 30 высокоскоростных интерфейсов. Количество портов SATA и USB при этом сохранилось на старом уровне, но в Z270 в стандарте USB 3.0 может работать не 8, а 10 портов.

    Множество новых чипсетов двухсотой серии состоит не только из одного Intel Z270. Акцентировать внимание именно на нём мы решили потому, что он - самый оснащённый и единственный, поддерживающий разгон процессора (как через изменение множителей, так и частотой базового тактового генератора). Однако, кроме него, линейка новых наборов логики включает пару более простых потребительских чипсетов — H270 и B250, а также пару чипсетов для корпоративной среды - Q270 и Q250, которые выделяются наличием набора функций Intel Standard Manageability для удалённого управления и администрирования.

    Наиболее же интересные для обычных пользователей H270 и B250 отличаются от Z270 не только отсутствием оверклокерских возможностей. В них сокращено число линий PCI Express 3.0 и портов USB 3.0, а также урезано количество M.2-интерфейсов, которые могут быть подключены к драйверу Intel RST. Кроме того, младшие наборы системной логики не позволяют делить процессорную шину PCI Express по нескольким слотам.

    Полное представление о соответствии характеристик наборов логики двухсотой серии можно получить из следующей таблицы.

    ⇡ Тестовый процессор: Core i7-7700K

    Для проведения тестирования нам был предоставлен старший представитель десктопной линейки Kaby Lake, Core i7-7700K.

    Этот четырёхъядерный процессор с поддержкой технологии Hyper-Threading и 8-мегабайтным кешем третьего уровня имеет паспортную тактовую частоту 4,2 ГГц. Однако проверка показала, что в практических условиях частота Core i7-7700K составляет 4,4 ГГц при нагрузке на все ядра и 4,5 ГГц - при малопоточной нагрузке. Таким образом, по частотам старшему Kaby Lake удалось обогнать не только , но и старичка , который до недавних пор оставался самым высокочастотным процессором Intel для настольных систем.

    Рабочее напряжение нашего экземпляра составило 1,2 В: здесь существенных отличий от процессоров прошлых поколений нет.

    В состоянии простоя частота Kaby Lake снижается до 800 МГц, причём, помимо привычной технологии Enhanced Intel SpeedStep, процессором поддерживается и более новая технология Intel Speed Shift. Она передаёт управление частотой от операционной системы самому процессору. За счёт этого достигается значительное улучшение времени реакции на изменяющуюся нагрузку: процессор быстрее выходит из энергосберегающих состояний и в случае необходимости быстрее включает турборежим. Но есть и ограничение: технология Speed Shift работает лишь в Windows 10.

    Слева - Core i7-7700K (Kaby Lake), справа - Core i7-6700K (Skylake)

    Определённые изменения произошли и с внешним видом CPU. Правда, они носят скорее косметический характер. Например, от использования тонкого текстолита, который появился в Skylake, Intel в Kaby Lake не отказалась. Зато поменялась форма теплораспределительной крышки. У неё появились дополнительные приливы, которые увеличивают площадь контакта с подошвой кулера. Впрочем, на эффективность теплоотвода это, скорее всего, повлияет мало. Ведь главная проблема на пути тепла от процессорного кристалла - полимерный термоинтерфейс не лучшего качества, который располагается под процессорной крышкой. А в этом отношении все как прежде: высокоэффективный припой остаётся прерогативой флагманских процессоров в LGA2011-v3 исполнении.

    Перемены есть и со стороны процессорного «брюшка». Впрочем, Kaby Lake сохраняет совместимость с гнездом LGA1151, поэтому отличий по сравнению с Skylake здесь совсем мало. Стабилизирующая схема осталась той же самой, так что набор навесных элементов сохранился. Небольшую разницу можно заметить лишь в их взаимном расположении.

    Если коротко: перед вами те же чипы Skylake, но с более высокими частотами и продвинутым аппаратным движком обработки видео. И все же некоторые модели весьма интересны. К тому же есть незыблемое правило: компьютер с нуля лучше собирать на как можно более современном железе.

    Intel Core i3-7320

    Коротко о продукте: 2 ядра, но 4 потока, 4,1 ГГц, 4 МБ кэш третьего уровня, 51 Вт TDP
    Особенности: очень высокая частота в дефолте - 4,1 ГГц
    Цена: 149 долларов США
    Бюджет игрового компьютера с этим процессором: 35-40 000 рублей

    Первоначально это место в подборке отводилось Core i3-7350K. Он уникальный. Как поется в песне группы «Кино»: перемен требуют наши сердца! Действительно, с 2011 года у Intel есть два процессора с возможностью разгона. Один Core i5 и один Core i7 (был еще юбилейный Pentium G3258 , но это исключение, подтверждающее правило). Такие модели легко распознать. Они самые быстрые, они самые дорогие, они имеют литеру «К» в названии. Ветер перемен подул именно в 2017 году, именно с выпуском Core i3-7350K. Уже давно Intel не выпускала оверклокерские бюджетные процессоры. Естественно, за разгонные способности придется доплатить. Чип стоит 168 долларов, но это, тем не менее, дешевле самого медленного Kaby Lake-четырехъядерника Core i5-7400 ($182).

    Core i3-7350K быстрый и без какого-либо разгона. Работает на частоте 4,2 ГГц. Его вполне возможно разогнать вплоть до 4,8-5,0 ГГц. Естественно, для этого потребуется иметь в своем арсенале качественный кулер. И вообще для разгона необходима более дорогая материнская плата на чипсете Z170/Z270 Express. О том, какие устройства необходимы Core седьмого поколения, читайте в этом материале . Так что экономия - вопрос спорный. Как и возможность оверклока. Но 4,2 ГГц из коробки - это уже серьезно. А Core i3-7320 работает со скоростью 4,1 ГГц. Всего на 100 МГц меньше, но зато мы экономим сразу 19 долларов.

    Intel Core i3-7320

    Intel Core i5-7400

    Коротко о продукте: 4 ядра, 3,0 (3,5) ГГц, 6 МБ кэш третьего уровня, 65 Вт TDP
    Особенности: самый дешевый четырехъядерный Kaby Lake
    Цена: 182 доллара
    Бюджет игрового компьютера: 50-55 000 рублей

    А у процессоров Core i5, как известно, в наличии полноценные четыре ядра. А современные игры все больше и больше любят многопоточность. Пожалуй, самый наглядный пример - это Battlefield 1. В нем любой Core i5 загружен на 100%. Но такого чипа все равно достаточно для сборки игрового компьютера с мощной видеокартой, включая Radeon RX 480 и GeForce GTX 1060 .

    Не забываем про одну заманчивую особенность новеньких Kaby Lake. Чипы получили не очень быструю встроенную графику HD 630, но у нее есть продвинутый медиаблок. В итоге все силы процессора могут быть «кинуты» на обеспечение работы видеокарты, а аппаратные блоки интегрированного GPU, например, обеспечат работу программы потокового вещания OBS.

    Intel Core i5-7400

    Intel Core i7-7700

    Коротко о продукте: 4 ядра, но 8 потоков, 3,6 (4,2) ГГц, 8 МБ кэш третьего уровня, 65 Вт TDP
    Особенности: самый быстрый процессор с 65 Вт TDP
    Цена: 303 доллара
    Бюджет игрового компьютера: 60-75 000 рублей

    Подробно возможности Core i7-7700 изучены в обзоре . Самая «мякотка» заключается в том, что при довольно низком для настольных процессоров TDP (всего 65 Вт) под нагрузкой все четыре ядра чипа функционируют на частоте 4 ГГц. Получаем две вещи. Во-первых, толк от восьми поток есть в том числе и в играх. Во-вторых, высокая частота. Поможет и в работе, и в развлечениях. Core i7-7700 отлично подружится с видеокартой уровня GeForce GTX 1070 . А невысокий уровень типичного тепловыделения позволит собрать игровой компьютер любой сложности. Да хоть размером с игровую приставку!

    Intel Core i7-7700

    Intel Core i7-7700K

    Коротко о продукте: 4 ядра, но 8 потоков, 4,2 (4,5) ГГц, 8 МБ кэш третьего уровня, 91 Вт TDP
    Особенности: разгоняется до 5 ГГц. Если повезет.
    Цена : 339 долларов
    Бюджет игрового компьютера: 100 000 рублей

    Мейнстрим-платформа Intel, а LGA1151 такой и является, поддерживает максимум четырехъядерные процессоры Core i7. Поэтому Core i7-7700K отличается от Core i7-7700 только частотой, наличием разблокированного множителя и, как следствие, увеличенным уровнем TDP. Модель оверклокерская. При должном везении разгоняется до 5 ГГц с использованием хорошей системы охлаждения. В последний раз такой оверклокерской прытью хвастали чипы Sandy Bridge, выпущенные в далеком 2011 году. Понятно, что с Core i7-7700K может использоваться любая современная видеокарта. Или даже две.

    Конец производственного ритма Intel «тик-так» означает, что Kaby Lake стала уже третьей архитектурой, основанной на 14-нм процессоре. Начав с Broadwell (5-е поколение, «тик»), компания-изготовитель представила новую микроархитектуру Skylake (6-е поколение, «так»), которая была оптимизирована в 7-м поколении. Улучшение энергоэффективности и повышение частоты было достигнуто за счет менее напряженной планировки транзисторов. Компания Intel выпустила большой ряд новых процессоров Kaby Lake, начиная от мобильных KBL-U на 15 и 28 Вт и KBL-H на 45 Вт до моделей для рабочих станций KBL-S с расчетным потреблением 35-91 Вт. Есть и 3 разгоняемых варианта, включая і3.

    Озеро Каби

    Первый официальный запуск Kaby Lake состоялся в сентябре 2016 г. и включал 6 мобильных процессоров, предназначенных для установки в премиум-ноутбуках и мини-ПК. Они показали хорошие результаты, и в начале 2017 г. компания Intel представила более 25 новых моделей. Основной особенностью процессоров Kaby Lake является поддержка Optane Memory и чипсетов 200-й серии. Кроме того, графика Gen9 была обновлена Main10 и другими системами воспроизведения видео с пониженным энергопотреблением, а схема подверглась коррекции для улучшения частотной кривой напряжения.

    Обзор процессоров Kaby Lake

    Intel определяет свои производственные линии по сегментам Y, U, H и S. Недавние изменения в схеме именования усложнили определение того, к какому сегменту чип относится, если не знать TDP или схематику ядра.

    Серия Y, использующая номенклатуру Kaby Lake Pentium, Core m3, Core і5/і7 и Core і5/і7 vPro, представляет собой 2- и 4-ядерные процессоры с гиперпоточностью и расчетной тепловой мощностью 4,5 Вт, которые ориентированы на небольшие и легкие мобильные ПК. Столь малое потребление энергии достигается благодаря сверхнизкой базовой частоте. Это позволяет устанавливать аккумуляторы меньшей емкости, обеспечивая небольшой вес и длительное время автономной работы.

    Серия U потребляет 28 и 15 Вт, имеет 2 ядра с гиперпоточностью, но с гораздо более высокой тактовой частотой. Включает процессоры Kaby Lake Pentium, Celeron, Core і3/і7. Они часто дешевле модельного ряда Y, поскольку не ограничены жесткими требованиями к напряжению и частоте и находят применение в премиальных игровых ноутбуках. Часть процессоров оборудована дополнительным чипом eDRAM объемом 64 или 128 МБ, который служит буфером DRAM с основной памятью и влияет на скорость графики.

    Чипы серии H имеют расчетную потребляемую мощность 45 Вт и обеспечивают максимальную производительность мобильных устройств. Intel продвигает их под брендом VR Ready, что указывает на их использование в системах виртуальной реальности. Выпускаются в различных комбинациях составляющих и быстродействия.

    Серия S предназначена для настольных ПК. Ничем не примечательна. Было выпущено 3 модификации Core і7 с 4-мя ядрами процессора Kaby Lake и гиперпоточностью, одна из которых позволяет разгон, а другая отличается малой мощностью. Также выпускаются несколько 4-ядерных і5 в похожих модификациях и 2-ядерные чипы і3.

    В новом модельном ряду KBL-S можно выделить возможность разгона Core і3-7350K, 2-ядерного процессора с гиперпоточностью, 60 Вт, базовой частотой 4,2 ГГц (без турборежима) и настраиваемым множителем. Это стало ответом на просьбы энтузиастов, которые таким образом добиваются производительности ЦПУ, соответствующей устройствам более высокого класса.

    Speed Shift v2

    Одной из новых особенностей Skylake была функция Speed ​​Shift. При наличии правильного драйвера система может отказаться от управления турборежимом процессора в пользу самого процессора. Используя внутреннюю метрическую коллекцию в сочетании с доступом к системным датчикам, ЦП может регулировать частоту с большей точностью и быстрее, чем ОС. Цель Speed ​​Shift состоит в том, чтобы позволить системе быстрее реагировать на запросы производительности (например, взаимодействовать с сенсорным экраном или просматривать веб-страницы), уменьшать задержки и улучшать работу пользователя. Поэтому, когда операционная система ограничена предопределенными параметрами P-состояния, процессор с поддержкой Speed Shift с правильным драйвером способен почти непрерывно менять множители частоты ЦПУ в широком диапазоне значений.

    Первая итерация Speed ​​Shift сократила время набора пиковой частоты со 100 до 30 мс. Единственным ограничением был драйвер, который теперь входит в состав Windows 10 и поставляется по умолчанию.

    С появлением новой архитектуры улучшился аппаратный контроль Speed ​​Shift. Intel не изменило название технологии, но улучшения оказались существенными. Драйвер не изменился, поэтому он работает со всеми модификациями Speed Shift, но процессор теперь может достичь максимальной частоты за 10-15 мс, а не за 30.

    Оптановая память

    Одной из целей индустрии памяти является создание чего-то со скоростью DRAM, но более стойкого, чтобы данные сохранялись и при отсутствии питания. DRAM использует энергию для обновления данных, но является основным источником перемещения данных программного обеспечения. Большая часть ускорения работы ПО зависит от скорости доступа к памяти или возможность иметь данные ближе к ядру, когда это необходимо, поэтому наличие большой, близкой, энергонезависимой памяти может увеличить производительность и снизить энергопотребление. На ее создание была потрачена большая часть десятилетия. Intel (и Micron) официально объявили о своем решении, 3D XPoint, год назад, однако до этого официально о ее реализации не сообщалось.

    Медиавозможности

    Хотя с точки зрения функционала Intel Kaby Lake не сильно отличается от Skylake, в графике видны явные улучшения. Как и в случае с ядрами ЦПУ, процесс 14nm+ позволил увеличить частоту и улучшить производительность ГПУ, но, возможно, более впечатляющие изменения - это обновленные возможности мультимедиа. Основная архитектура графического процессора Gen9 не изменилась, но компания Intel пересмотрела блоки обработки видео, добавив функциональность и улучшив эффективность.

    Аппаратное ускорение 4К

    Главным отличием в медиадвижке Kaby Lake-U/Y является наличие полного аппаратного ускорения для кодирования и декодирования 4K-видеороликов формата HEVC Main10. Это контрастирует со Skylake, который поддерживает 4к p30, но делает это с использованием гибридного процесса, который распределяет нагрузку между ЦПУ, медиапроцессорами и шейдерными ядрами ГПУ. В результате Kaby Lake не только обрабатывает больше профилей HEVC, но затрачивает на это лишь долю мощности при гораздо большей пропускной способности. Также в новой архитектуре было реализовано 8-битное кодирование и 8/10-битное декодирование кодека VP9 от Google. Skylake предлагала гибридное декодирование кодека, не обеспечивавшее достаточную энергоэффективность. Новая схема аппаратного ускорения HEVC Main10 и VP9 является частью блока MFX. Движок качества видео получил поддержку HDR и Wide Color Gamut.

    Согласно Intel, Kaby Lake U/Y способен обрабатывать до 6 4Кр30-кодеков AVC и HEVC одновременно. Поддержка декодирования HEVC рассчитана на 4Кр60 до 120 Мбит/с, что необходимо для воспроизведения премиального контента и UHD Blu-ray. Благодаря усовершенствованиям процесса даже 4,5-ваттные чипы Y способны обрабатывать HEVC 4Кр30 в режиме реального времени. Таким образом, в сериях U и Y была разрешена одна из основных жалоб на Skylake: отсутствие аппаратно ускоренного декодирования 4Kp60 HEVC Main10. Есть и другие улучшения, которые обеспечивают более удовлетворительный мультимедийный опыт для потребителей.

    Возможности подключения

    Поток графики процессора Kaby Lake U/Y такой же, как у Skylake. Это означает, что iGPU обслуживает до 3 дисплеев одновременно.

    Один из неутешительных аспектов Skylake, который не был устранен в Kaby Lake-U/Y - отсутствие собственного порта HDMI 2.0 с поддержкой HDCP 2.2. Intel выступает за добавление LSPCon в DP 1.2. Этот подход использовался на нескольких материнских платах и ​​даже в мини-ПК, таких как Skull Canyon NUC (NUC6i7KYK) и ASRock Beebox-S.

    Чипсеты

    Новые концентраторы контроллеров PCH сопряжены с сокетами LGA1151 и, таким образом, поддерживают как Skylake, так и Kaby Lake. Микросхемы серии 100, такие как Z170, тоже совместимы с новыми процессорами после обновления BIOS.

    Сегодня довольно предсказуемы. Z-серия ориентирована на мультиграфические чипы и разгон, H отличается отсутствием последнего, Q предназначена для платформ с поддержкой vPro и B ориентирована на более дешевые решения.

    Доступны также 3 мобильных чипсета с аналогичными отличиями, включая набор для Xeon в CM238, позволяющий использовать новые процессоры Е3-1500 v6.

    Совместимые платы

    Материнские платы для процессоров Kaby Lake - ASUS Maximus ІХ Code, GIGABYTE Z270X, Supermicro С7Z270-CG, ASRock Z270, MSI Z270, ECS Z270H4-І. На них появились новые контроллеры, в т. ч. USB 3.1 10 Гбит/с ASMedia ASM2142, который использует две полосы PCIe 3.0 для поддержки до 2 портов. Ранее для этого использовался только 1 слот РСІе 3.0.

    Также обновлен контроллер аудио Realtek ALC1220: есть выход 120 дБА и вход 113 дБА. Это должно обеспечить наилучшее измеримое качество. Сетевое подключение по-прежнему производится гигабитным Ethernet-контроллером Intel I219-V. Большим изменением здесь должно стать внедрение мультигигабитного Aquantia 5G/2.5G AQC107. Новым стал 10-Гбит/с интерфейс USB 3.1 на передней панели в MSI Z270 Gaming М7. В настоящее время он активируется через ASM2142, используя две полосы РСІе для обеспечения одного USB 3.1.

    Технически все материнские платы, оснащенные Kaby Lake, должны иметь возможность поддерживать Optane Memory. LED-подсветка тоже играет большую роль в материнских платах 200-й серии: ее лишены только несколько моделей в каждой ценовой категории.

    Производительность

    Как и следовало ожидать, никакого выигрыша в быстродействии нет. По отзывам пользователей, 3-ГГц процессор Kaby Lake i7-7700K работает аналогично Core i7-6700K с тактовой частотой 3 ГГц (с отключенной гиперпотоковостью). Единственное различие состоит в поддержке памяти. Если Skylake совместим с DDR4-2133, то Kaby Lake - с DDR4-2400, однако это незначительно влияет на почти все контрольные показатели.

    Потребление энергии

    Одно из основных преимуществ процессора Kaby Lake - та же частота при меньшей мощности или большая при той же мощности по сравнению со Skylake. i7-7700K поддерживает турборежим в 4,5 ГГц при тепловой мощности 91 Вт. У всех тестировавшихся процессоров Kaby Lake даже при ручном разгоне потребление близкое к расчетному, хотя обычно поставщик ЦП значительно переоценивает напряжение, требуемое для стабильной работы чипа.

    Разгон

    По отзывам пользователей, восприятие ими увеличения тактовой частоты в Kaby Lake изменилось благодаря новой функции AVX Offset, которая находится в BIOS каждой материнской платы Z270. Известно, что инструкции AVX наносят ущерб разгону, снижая стабильность и затрудняя продвижение кода без AVX. Теперь пользователь может применить смещение (например, -10x), которое уменьшит множитель, когда встречается команда AVX. Это означает, что при разгоне процессора Kaby Lake до 4,8 ГГц с AVX-смещением 8x команда AVX будет выполняться на 4,0 ГГц, выделяя меньше тепла и сохраняя стабильность системы.

    Согласно пользователям, частота 4,8 ГГц AVX легко достижима даже при разумном напряжении. і7-7700K достигает 4,9 ГГц со смещением AVX -10, а і5-7600K - 5,0 ГГц, даже при включенном AVX.

    По большому счету разгон і7-7700К с 4,2 до 4,8 ГГц практического преимущества не дает. Разница в 600 МГц соответствует 13-14% росту производительности, что не так много. Однако, учитывая профиль напряжения чипов, частота 4,5 ГГц обеспечивает хорошие температуры и напряжения, по-прежнему превосходя і7-4790K или і7-6600K.

    Результаты тестирования

    По отзывам пользователей, сравнение процессоров Kaby Lake подтверждает, что Core і7-7700K побеждает почти в каждом тесте (кроме нескольких, где і7-5775C все еще лучше из-за 128 МБ eDRAM).

    Core і5-7600K работает почти так же, за исключением сценариев с небольшим числом потоков (например, при трассировке лучей), но при выполнении повседневных задач процессор, безусловно, ни в чем не уступает. Core і5-7600K из-за отсутствия роста ІРС по существу является базовым і5-6600K, кроме нескольких дополнительных мегагерц. Разгоняется процессор хорошо - его температура намного лучше, чем і7-7700K, но больше ничего необычного он собой не представляет.

    Слоном в посудной лавке, однако, является Core і3-7350K. При цене в 159 $ он всего в 11-ти долларах от Core і5-7400, который стоит 170 $, но имеет 2 два полных ядра, хотя и на более низкой частоте (3 ГГц против 4,2 ГГц).

    Стала ли новая архитектура Intel новой вехой?

    По большей части Kaby Lake больших изменений не предлагает. Поддержка памяти Optane является плюсом, но в остальном - это просто сдвиг по кривой мощности и эффективности. Энергия, потребляемая при 3,0 ГГц в прошлом году, теперь дает 3,3 ГГц, что означает экономию времени, затрачиваемого на выполнение работы, или экономию электричества. Speed ​​Shift v2 - действительно приятная функция, но она ограничена пользователями Windows 10. Больший интерес представляет набор новых контроллеров (ALC1220, E2500, Aquantia). Оптимизационная архитектура не вызывает восхищенного удивления, но обеспечивает 10%-й рост эффективности.